Sections: 01 (Block B) Gutierrez, 02 (Block B) Chen, 04 (Block F) Duchin, 05 (Block F) Ruane, 06 (Block F) Kaufmann 07 (Block H) Duchin

Course Website: trunk.tufts.edu.

Required Materials: MyMathLab Student Access Kit from Addison Wesley (Pearson), which is available online at www.pearsonmylab.com. You can also buy the Access Kit packaged with a hardcopy of the textbook, Calculus: Early Transcendentals **OR** Single Variable Calculus, by William L. Briggs and Lyle Cochran, Addison Wesley (Pearson), 2010, from the bookstore. The Student's Solutions Manual is available, but not required. The Complete Solutions Manual will be held on reserve in the Tisch Library.

Exams and Grading: The full department policy on exams and grading can be found on the department website: http://math.tufts.edu/. Select *Exams and Grading Policy*. Students found violating this policy will receive an F in the course and be reported to the Dean of Students. Exam rooms are always posted on the Math Dept website t

http://math.tufts.edu/ under the Exams menu.

Disability Services: If you are requesting an accommodation due to a documented disability, you must register with the Disability Services Office at the beginning of the semester. To do so, call the Student Services Desk at 617-627-2000 to arrange an appointment with Sandra Baer, Program Director of Disability Services.

Homework: Homework is assigned for each lecture, through the MyMathLab website. See handout for more information. You are encouraged to collaborate with other students on the homework and to check your solutions using the solutions manuals. However, you must submit your own solutions using your own MyMathLab account. Assignments for classes up to and including Tuesday, Sept. 20 will be due on Monday, Sept. 26 at 11:59pm. All following assignments will be due at 11:59pm on the day of the following lecture. Each assignment is weighted equally, but your lowest three scores will be dropped.

MyMathLab course IDs:

01 (Block B) gutierrez69732, **02** (Block B) chen17875, **04** (Block F) duchin79095, **05** (Block F) ruane28914, **06** (Block F) kaufmann65464 **07** (Block H) duchin55815

Grades: Suppose that H is your homework score, L is the lower of your two midterm exam scores, T is your other midterm exam score, and F stands for your final exam score. Your course average is the larger of these two numbers:

.2 L + .3 T + .4 F + .1 H or .3 L + .3 T + .3 F + .1 H.

If you miss a midterm exam for a reason accepted as legitimate by the Mathematics Department, your course average would become the larger of these two numbers:

$$.25 T + .65 F + .1 H$$
 or $.4 T + .5 F + .1 H$.

The course average is converted into a letter grade according to the conversion chart given on the Mathematics Department website at http://math.tufts.edu/.

Learning Objectives: This course satisfies Learning Objective 1a as listed at http://ase.tufts.edu/faculty-committees/assessment/math.htm. This can also be found at http://math.tufts.edu/.

Date (B,F,H)	Lecture#	Topic	Comments
09-06 Tues	1	Pre-Calculus Review	
09-08 Thurs	2	Pre-Calculus Review	
09-09 Fri	3	2.1: Idea of Limits;	
09-13 Tues	4	2.2: Definitions of Limits;	
09-15 Thurs	5	2.3: Computing Limits	
09-16 Fri	6	2.4: Infinite Limits	
09-20 Tues	7	2.5: Limits at infinity	
09-22 Thurs	8	2.6: Continuity	
09-23 Fri	9	3.1: Intro to the derivative	
09-27 Tues	10	3.2: Rules of Differentiation	
09-29 Thurs	11	3.3: Prod and Quotient rules	
09-30 Fri	12	3.4: Derivs of Trig funcs	
10-04 Tues	13	3.5: Derivs as Rates of Change	
10-06 Thurs	14	6.8: Exponential Models	
10-07 Fri	15	3.6: Chain Rule	
10-11 Tues	16	3.6: Chain Rule (again)	UPPER CLASSMEN DROP DAY
10-13 Thurs	17	Derivs of logs	
10-14 Fri	18	EXAM I REVIEW	Exam 1 covers lectures $1 - 16$
10-17 MONDAY		EXAM I	12:00-1:20
10-18 Tues	19	3.9: Derivs of InverseTrig	
10-20 Thurs	20	4.1: Maxima and Minima	
10-21 Fri	21	4.1: Maxima and Minima	
10-25 Tues	22	4.2: What the deriv tells us	
10-27 Thurs	23	4.3: Graphing functions	
10-28 Fri	24	4.3: Graphing funcs (again)	
11-01 Tues	25	4.4: Optimization	
11-03 Thurs	26	4.4: Optimization (again)	
11-04 Fri	27	4.5: Linear approx	
11-08 Tues	28	4.6: Mean Value Thm	FRIDAY SCHEDULE
11-10 Thurs	29	4.7: L'Hopital's Rule	
	11-11 Friday	VETERANS' DAY	NO CLASSES
11-15 Tues	30	4.8: Antiderivatives	FIRST YEAR DROP DAY
11-17 Thurs	31	5.1: Approximating area	
11-18 Fri	32	EXAM II REVIEW	Exam covers lectures 18–31
11-21 Mon	EXAM II		12-1:20
11-22 Tues	33	5.2: Definite integrals	
	11 - 23 - 11 - 27	THANKSGIVING BREAK	
11-29 Tues	34	5.3: Fund theorem of calculus	
12-01 Thurs	35	6.1: Velocity and net change	
12-02 Fri	36	5.5: Substitution	
12-06 Tues	37	5.5: Substitution (again)	
12-08 Thurs	38	6.2: Regions between curves	
12-09 Fri	39	FINAL REVIEW	12-12 is DROP WITH W DAY
12-15 Thurs	FINAL EXAM	Final Exam is comprehensive	8:30-10:30 a.m.

Note: the indicated problems are taken from Briggs-Cochran, "Calculus: Early Transcendentals"