Consider the region bounded by $y=3\cos x$ and the x and y axes, for $0 \le x \le \pi/2$. When revolved around the x-axis, it makes a solid.

compute the volume of the solid below, showing your work.

$$V = \int_{0}^{\pi l_{2}} 9\pi \cos^{2}x dx = 9\pi \int_{0}^{\pi l_{2}} \frac{1 + \cos(2x)}{2} dx$$

$$= \frac{9\pi}{2} \left[x + \frac{\sin(2x)}{2} \right]_{0}^{\pi l_{2}} = \frac{9\pi}{2} \left[\frac{T}{2} - 0 \right] = \frac{9\pi^{2}}{4}$$

Consider the region bounded by $y = 3\cos x$ and the x-axis, for $-\pi/2 \le x \le \pi/2$. When revolved around the x-axis, it makes a solid.

Sketch the region.

r=3cosx $A=\Pi r^2=9\cos^2\times \Pi$

With the method of

 $\cos^2 x = \frac{1 + \omega_5(2x)}{2}$

dishs

disks / washers / shells

and integration with respect to

X

x/y

compute the volume of the solid below, showing your work.

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 9\pi \cos^2 x \, dx = \frac{9\pi}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (1 + \cos(2x)) dx$$

$$= \frac{9\pi}{2} \left[x + \frac{\sin(2x)}{2} \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{9\pi}{2} \left[\frac{\pi}{2} - \frac{\pi}{2} \right] = \frac{9\pi^2}{2}$$

$$\sin \pi = 0$$
Sin $\pi = 0$

WHATEN SIN (TT)=0 Consider the region bounded by $y = 2\cos x$ and the x and y axes, for $0 \le x \le \pi/2$. When revolved around the x-axis, it makes a solid.

Sketch the region.

$$r=2\omega s \times$$

$$A = \pi r^2 = 4 \cos^2 x \cdot \pi$$

$$\cos^2 x = \frac{1 + \cos(2x)}{2}$$

entet dessa

Sin (0)=0

With the method of

disks

and integration with respect to

X

x/y

disks / washers / shells

compute the volume of the solid below, showing your work.

$$V = \int_{0}^{\pi/2} 4\pi \cos^{2}x \, dx = 4\pi \int_{0}^{\pi/2} \frac{1 + \cos(2x)}{2} \, dx$$

$$= 2\pi \left[x + \frac{\sin(2x)}{2} \right]_{0}^{\pi/2} = 2\pi \left[\frac{\pi}{2} - 0 \right] = \pi^{2}.$$