INTRODUCTION TO NILPOTENT GROUPS

Moon Duchin
YOUR NEW FAVORITE GROUP
YOUR NEW FAVORITE GROUP

➤ the Heisenberg group: $H(\mathbb{Z}) \leq H(\mathbb{R})$
➤ the Heisenberg group: $H(\mathbb{Z}) \leq H(\mathbb{R})$

\[
\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.
\]
YOUR NEW FAVORITE GROUP

- the Heisenberg group: \(H(\mathbb{Z}) \leq H(\mathbb{R}) \)

\[
a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
YOUR NEW FAVORITE GROUP

- The Heisenberg group: \(H(\mathbb{Z}) \leq H(\mathbb{R}) \)

 \[
a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
 \]

- Commutator: \([g,h] = ghg^{-1}h^{-1}\) — measures the failure to commute. Write nested commutators \([g,h,j,k] = [[[g,h],j],k],\) etc.
YOUR NEW FAVORITE GROUP

➤ the Heisenberg group: \(H(\mathbb{Z}) \leq H(\mathbb{R}) \)

\[
\begin{align*}
a &= \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, &
 b &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, &
 c &= \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\end{align*}
\]

➤ commutator: \([g,h] = ghg^{-1}h^{-1}\) — measures the failure to commute. Write nested commutators \([g,h,j,k] = [[[g,h],j],k]\), etc.

➤ In \(H \), one checks that \([a,b] = c\), and \([a^n,b^m] = c^{nm}\).
YOUR NEW FAVORITE GROUP

➤ the Heisenberg group: $H(\mathbb{Z}) \leq H(\mathbb{R})$

$$a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

➤ commutator: $[g,h] = ghg^{-1}h^{-1}$ — measures the failure to commute. Write nested commutators $[g,h,j,k] = [[[g,h],j],k]$, etc.

➤ In H, one checks that $[a,b] = c$, and $[a^n, b^m] = c^{nm}$.

➤ Generalization: a closed path in ab plane equals c^A (signed area).
YOUR NEW FAVORITE GROUP

- the Heisenberg group: $H(\mathbb{Z}) \leq H(\mathbb{R})$

$$a = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- commutator: $[g,h] = ghg^{-1}h^{-1}$ — measures the failure to commute. Write nested commutators $[g,h,j,k] = [[[g,h],j],k]$, etc.

- In H, one checks that $[a,b] = c$, and $[a^n,b^m] = c^{nm}$.

- Generalization: a closed path in ab plane equals c^A (signed area).

- The letter c is central, so $[g,h,k] = 1$ for any group elements. (This is called 2-step nilpotency.)
the Heisenberg group: $H(\mathbb{Z}) \leq H(\mathbb{R})$

$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

commutator: $[g, h] = ghg^{-1}h^{-1}$ — measures the failure to commute. Write nested commutators $[g, h, j, k] = [[[g, h], j], k]$, etc.

In H, one checks that $[a, b] = c$, and $[a^n, b^m] = c^{nm}$.

Generalization: a closed path in ab plane equals c^A (signed area).

The letter c is central, so $[g, h, k] = 1$ for any group elements. (This is called 2-step nilpotency.)

s-step nilpotent $\iff (s+1)$-fold commutators are killed
Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps
Generally, nilpotent means LCS gets to $\{1\}$ in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$
NILPOTENT GENERALITIES

- Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.
\]

\[
G_{k+1} = [G_k, G]
\]
NILPOTENT GENERALITIES

➤ Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.
\]

\[
G_{k+1} = [G_k, G]
\]

➤ Other examples: higher Heis \(H_{2k+1} \); free nilpotent groups \(N_{s,m} \)
NILPOTENT GENERALITIES

➤ Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.
\]

\[
G_{k+1} = [G_k, G]
\]

➤ Other examples: higher Heis \(H_{2k+1} \); free nilpotent groups \(N_{s,m} \)

\[
H_7 = \begin{pmatrix}
1 & Z & Z & Z & Z \\
0 & 1 & 0 & 0 & Z \\
0 & 0 & 1 & 0 & Z \\
0 & 0 & 0 & 1 & Z \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
NILPOTENT GENERALITIES

➤ Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.
\]

\[
G_{k+1} = [G_k, G]
\]

➤ Other examples: higher Heis \(H_{2k+1} \); free nilpotent groups \(N_{s,m} \)

\[
H_7 = \begin{pmatrix}
1 & Z & Z & Z \\
0 & 1 & 0 & Z \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
\langle a_1, \ldots, a_m \mid [a_{i_1}, \ldots, a_{i_{s+1}}] \text{ for all } i_j \rangle
\]
NILPOTENT GENERALITIES

➤ Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.
\]

\[
G_{k+1} = [G_k, G]
\]

➤ Other examples: higher Heis \(H_{2k+1} \); free nilpotent groups \(N_{s,m} \)

\[
H_7 = \begin{pmatrix}
1 & Z & Z & Z & Z \\
0 & 1 & 0 & 0 & Z \\
0 & 0 & 1 & 0 & Z \\
0 & 0 & 0 & 1 & Z \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
\langle a_1, \ldots, a_m \mid [a_{i_1}, \ldots, a_{i_{s+1}}] \text{ for all } i_j \rangle
\]

➤ The unitriangular groups \(UT_N(\mathbb{Z}) \) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most \(N-1 \) steps
NILPOTENT GENERALITIES

➤ Generally, nilpotent means LCS gets to $\{1\}$ in s steps

$$\{1\} = G_{s+1} \triangleleft \ldots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.$$

$$G_{k+1} = [G_k, G]$$

➤ Other examples: higher Heis H_{2k+1}; free nilpotent groups $N_{s,m}$

$$H_7 = \begin{pmatrix}
1 & Z & Z & Z \\
0 & 1 & 0 & 0 & Z \\
0 & 0 & 1 & 0 & Z \\
0 & 0 & 0 & 1 & Z \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$\langle a_1, \ldots, a_m \mid [a_{i_1}, \ldots, a_{i_{s+1}}] \text{ for all } i_j \rangle$$

➤ The unitriangular groups $UT_N(\mathbb{Z})$ are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most $N-1$ steps

➤ conversely: every fin-gen torsion-free nilpotent group embeds in some $UT_N(\mathbb{Z})$
Nilpotent Generalities

Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} < \ldots < G_3 < G_2 < G_1 = G.
\]

\(G_{k+1} = [G_k, G] \)

Other examples: higher Heis \(H_{2k+1} \); free nilpotent groups \(N_{s,m} \)

\[
H_7 = \begin{pmatrix}
1 & Z & Z & Z \\
0 & 1 & 0 & Z \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\langle a_1, \ldots, a_m \mid [a_i, a_j] \rangle
\text{ for all } i, j
\]

The unitriangular groups \(UT_N(Z) \) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most \(N-1 \) steps

Conversely: every fin-gen torsion-free nilpotent group embeds in some \(UT_N(Z) \)

This goes through a Lie group fact: every simply connected nilpotent group is isomorphic to a Lie subgroup of some \(UT_N(\mathbb{R}) \)
NILPOTENT GENERALITIES

➤ Generally, nilpotent means LCS gets to \(\{1\} \) in \(s \) steps

\[
\{1\} = G_{s+1} \triangleleft \cdots \triangleleft G_3 \triangleleft G_2 \triangleleft G_1 = G.
\]

\[G_{k+1} = [G_k, G]\]

➤ Other examples: higher Heis \(H_{2k+1} \); free nilpotent groups \(N_{s,m} \)

\[
H_7 = \begin{pmatrix}
1 & Z & Z & Z \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

\[\langle a_1, \ldots, a_m \mid [a_{i_1}, \ldots a_{i_{s+1}}] \text{ for all } i_j \rangle\]

➤ The unitriangular groups \(UT_N(\mathbb{Z}) \) are nilpotent because addition is additive on the first nonzero superdiagonal, so taking nested commutators will terminate in at most \(N-1 \) steps

➤ Conversely: every fin-gen torsion-free nilpotent group embeds in some \(UT_N(\mathbb{Z}) \)

➤ This goes through a Lie group fact: every simply connected nilpotent group is isomorphic to a Lie subgroup of some \(UT_N(\mathbb{R}) \)

(proved by embedding the Lie algebra into strictly upper \(\Delta \)s)
Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates
Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

$$\begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$
Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

\[(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}\]

\[(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).\]
Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

$$
(x, y, z) \leftrightarrow \begin{pmatrix}
1 & x & z + \frac{1}{2} xy \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$
GETTING TO KNOW YOUR NEW FAVORITE GROUP

▶ Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

$$\begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

$$(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$

linear linear quadratic
Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

$$
(x, y, z) \leftrightarrow \begin{pmatrix}
1 & x & z + \frac{1}{2}xy \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2}).$$

Theorem (deKimpe 2013): if \mathbb{Z}^n or \mathbb{R}^n has a group structure in which multiplication is polynomial, then it is a nilpotent group.
GETTING TO KNOW YOUR NEW FAVORITE GROUP

> Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

\[(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}\]

\[(x, y, z) \cdot (x', y', z') = (x + x', \quad y + y', \quad z + z' + \frac{xy' - yx'}{2})\]

Theorem (deKimpe 2013): if \mathbb{Z}^n or \mathbb{R}^n has a group structure in which multiplication is polynomial, then it is a **nilpotent group**.
Multiple ways to coordinatize. (a) matrix entries; (b) normal form $a^A b^B c^C$; (c) exponential coordinates

$$\begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

$$(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + \frac{xy' - yx'}{2})$$

Theorem (deKimpe 2013): if \mathbb{Z}^n or \mathbb{R}^n has a group structure in which multiplication is polynomial, then it is a nilpotent group.
NAVIGATING AROUND: “HORIZONTAL” DIRECTIONS
NAVIGATING AROUND: “HORIZONTAL” DIRECTIONS

➤ exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3:
NAVIGATING AROUND: “HORIZONTAL” DIRECTIONS

➤ exponential coordinates on \(H(\mathbb{R}) \) let us plot in \(\mathbb{R}^3 \):

\[
(x, y, z) \leftrightarrow \begin{pmatrix}
1 & x & z + \frac{1}{2} xy \\
0 & 1 & y \\
0 & 0 & 1
\end{pmatrix}
\]
NAVIGATING AROUND: “HORIZONTAL” DIRECTIONS

➤ exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3:

$$(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \quad (x, y, z)^n = (nx, ny, nz).$$
EXPERIMENTAL ALTERNATIVE:

➤ exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3:

$$(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \quad (x, y, z)^n = (nx, ny, nz).$$

➤ “horizontal” plane in Lie algebra can be “pushed around” by left multiplication to get a plane field (subbundle of TH).
NAVIGATING AROUND: “HORIZONTAL” DIRECTIONS

➤ exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3:

\[
(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2} xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \quad (x, y, z)^n = (nx, ny, nz).
\]

➤ “horizontal” plane in Lie algebra can be “pushed around” by left multiplication to get a plane field (subbundle of TH)

\[
X_0 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]
NAVIGATING AROUND: “HORIZONTAL” DIRECTIONS

➤ exponential coordinates on $H(\mathbb{R})$ let us plot in \mathbb{R}^3:

\[
(x, y, z) \leftrightarrow \begin{pmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}
\]

\[
(x, y, z)^n = (nx, ny, nz).
\]

➤ “horizontal” plane in Lie algebra can be “pushed around” by left multiplication to get a plane field (subbundle of TH)

\[
X_0 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y_0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}
\]
BALAYAGE: AREA VS. HEIGHT
Say a curve $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1\gamma_2' - \gamma_2\gamma_1')$.
Say a curve $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ is admissible if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1 \gamma_2' - \gamma_2 \gamma_1')$.

Fact 1: Any two points in H connected by an admissible path.
Say a curve $\gamma=(\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2} (\gamma_1 \gamma_2' - \gamma_2 \gamma_1')$.

- **Fact 1**: Any two points in H connected by an admissible path.
- **Fact 2**: Any plane curve $\gamma=(\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is area.
Say a curve \(\gamma=(\gamma_1,\gamma_2,\gamma_3) \) is *admissible* if its tangent vectors are horizontal, i.e., \(\gamma_3' = \frac{1}{2}(\gamma_1\gamma_2' - \gamma_2\gamma_1') \).

Fact 1: Any two points in \(H \) connected by an admissible path.

Fact 2: Any plane curve \(\gamma=(\gamma_1,\gamma_2) \) lifts uniquely to an admissible path. Third coordinate is **area**.
Say a curve $\gamma=(\gamma_1, \gamma_2, \gamma_3)$ is admissible if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2}(\gamma_1\gamma_2' - \gamma_2\gamma_1')$.

Fact 1: Any two points in H connected by an admissible path.

Fact 2: Any plane curve $\gamma=(\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is area.
Say a curve $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ is *admissible* if its tangent vectors are horizontal, i.e., $\gamma_3' = \frac{1}{2} (\gamma_1 \gamma_2' - \gamma_2 \gamma_1')$.

Fact 1: Any two points in H connected by an admissible path.

Fact 2: Any plane curve $\gamma = (\gamma_1, \gamma_2)$ lifts uniquely to an admissible path. Third coordinate is area.

- Proof: Stokes!
Say a curve \(\gamma = (\gamma_1, \gamma_2, \gamma_3) \) is admissible if its tangent vectors are horizontal, i.e., \(\gamma_3' = \frac{1}{2}(\gamma_1\gamma_2' - \gamma_2\gamma_1') \).

Fact 1: Any two points in \(H \) connected by an admissible path.

Fact 2: Any plane curve \(\gamma = (\gamma_1, \gamma_2) \) lifts uniquely to an admissible path. Third coordinate is area.

Proof: Stokes! \[z = \int_{\partial R} \gamma_1 \gamma_2' - \gamma_2 \gamma_1' = \int_R dx \wedge dy = \text{Area}(R). \]
CC GEOMETRY: SUB-RIEMANNIAN AND SUB-FINSLER
So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.
So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.
So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.

If you choose L^2, you’re doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L^1 or Hex.)
So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.

If you choose L^2, you’re doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L^1 or Hex.)
So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.

If you choose L^2, you’re doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L^1 or Hex.)
These metrics admit dilations $\delta_t(x,y,z) = (tx, ty, t^2z)$ that scale distance:

$$d(\delta_t p, \delta_t q) = t \cdot d(p, q)$$

So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.

If you choose L^2, you’re doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L^1 or Hex.)
So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of H. And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.

If you choose L^2, you’re doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like L^1 or Hex.)

These metrics admit dilations $\delta_t(x,y,z) = (tx, ty, t^2z)$ that scale distance:

$$d(\delta_t p, \delta_t q) = t \cdot d(p, q)$$
These metrics admit dilations \(\delta_t(x,y,z) = (tx, ty, t^2z) \) that scale distance:

\[
d(\delta_t p, \delta_t q) = t \cdot d(p,q)
\]

So you can norm the horizontal planes however you like and this induces lengths of admissible curves; get a length metric on all of \(H \). And actually this works for any Carnot group (nilpotent group with nice grading) if you norm its horizontal subbundle.

Lengths and areas of plane curves in a norm completely describe paths in this metric space.

If you choose \(L^2 \), you’re doing sub-Riemannian geometry; any other choice is sub-Finsler. (Like \(L^1 \) or Hex.)

These metrics admit dilations \(\delta_t(x,y,z) = (tx, ty, t^2z) \) that scale distance:
DESCRIPTION OF CC GEODESICS
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.
DESCRIPTION OF CC GEODESICS

➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.
DESCRIPTION OF CC GEODESICS

➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.
➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.
DESCRIPTION OF CC GEODESICS

➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.
➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.

➤ More generally: $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1,\gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.

\[\text{Diagram: short path connecting points.} \]
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1,\gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1,\gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.
You’ve got a norm on the \(xy\) plane. The length of a path in \(H\) is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: \(\gamma = (\gamma_1, \gamma_2, \gamma_3)\) as short as possible while connecting, say, \((0,0,0)\) and \((A,B,C)\). That means that \(\gamma = (\gamma_1, \gamma_2)\) is shortest from \((0,0)\) to \((A,B)\) enclosing area \(C\).
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma = (\gamma_1, \gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.
DESCRIPTION OF CC GEODESICS

➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.

➤ More generally: $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1,\gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.
DESCRIPTION OF CC GEODESICS

➤ You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

➤ One way to be geodesic: your shadow is a norm geodesic.

➤ More generally: $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma = (\gamma_1, \gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.

Indicatrix Isoperimetric
You’ve got a norm on the \(xy \) plane. The length of a path in \(H \) is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: \(\gamma = (\gamma_1, \gamma_2, \gamma_3) \) as short as possible while connecting, say, \((0,0,0)\) and \((A,B,C)\). That means that \(\gamma = (\gamma_1, \gamma_2) \) is shortest from \((0,0)\) to \((A,B)\) enclosing area \(C\).
DESCRIPTION OF CC GEODESICS

- You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

- One way to be geodesic: your shadow is a norm geodesic.

- More generally: $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1,\gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.

Indicatrix *Isoperimetrix* *Indicatrix* *Isoperimetrix*
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: $\gamma=(\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1, \gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: $\gamma=(\gamma_1,\gamma_2,\gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma=(\gamma_1,\gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.
You’ve got a norm on the xy plane. The length of a path in H is the norm-length of its shadow in the plane.

One way to be geodesic: your shadow is a norm geodesic.

More generally: $\gamma = (\gamma_1, \gamma_2, \gamma_3)$ as short as possible while connecting, say, $(0,0,0)$ and (A,B,C). That means that $\gamma = (\gamma_1, \gamma_2)$ is shortest from $(0,0)$ to (A,B) enclosing area C.

Let’s call these “beelines” and “area grabbers.”
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals
L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

- But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

- But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals.

- But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

➤ L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

➤ But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

➤ L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

➤ But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

- But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types

8 types of area-grabbers

geodesic

unit sphere
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

➤ L^2 case: isoperimetrix is a circle; beelines are straight horizontal lines; area-grabbers are circular spirals

➤ But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types

8 types of area-grabbers
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- \(L^2 \) case: isoperimetrix is a circle; beelimes are straight horizontal lines; area-grabbers are circular spirals

But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types

- 8 types of area-grabbers

Note: walls are cut away to see inside—it’s a topological sphere!
But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.
But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.

8 types of area-grabbers in L^1
But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.

- **8 types of area-grabbers in L^1**
- **24 types of area-grabbers in Hex**
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

➤ But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.

8 types of area-grabbers in L^1

24 types of area-grabbers in Hex
BEELINES AND AREA-GRABBERS: WALLS AND ROOF

- But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.

8 types of area-grabbers in L^1

24 types of area-grabbers in Hex

Plot of area enclosed by geodesics gives unit sphere as piecewise-quadratic graph
But in polygonal norms, the beelines can enclose area, and the area-grabbers come in different combinatorial types.

8 types of area-grabbers in L^1

24 types of area-grabbers in Hex

Plot of area enclosed by geodesics gives unit sphere as piecewise-quadratic graph.

There are flat vertical “walls” coming from the beelines (range of areas for same endpoint).
Thurston’s eight 3D “model geometries”:

\[\mathbb{R}^3, S^3, \mathbb{H}^3, S^2 \times \mathbb{R}, \mathbb{H}^2 \times \mathbb{R}, \text{Nil, Sol, and } \widetilde{\text{SL}(2,\mathbb{R})} \]
Thurston’s eight 3D “model geometries”:

\[\mathbb{R}^3, \ S^3, \ \mathbb{H}^3, \ S^2 \times \mathbb{R}, \ H^2 \times \mathbb{R}, \ Nil, \ Sol, \ \text{and} \ \widehat{\text{SL}(2,\mathbb{R})} \]

- Nil is \(H(\mathbb{R}) \) with its sub-Riemannian metric.
Thurston’s eight 3D “model geometries”:

\[\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3, \mathbb{S}^2 \times \mathbb{R}, \mathbb{H}^2 \times \mathbb{R}, \text{Nil, Sol, and } \widehat{\text{SL}(2,\mathbb{R})} \]

- Nil is \(H(\mathbb{R}) \) with its sub-Riemannian metric.
Thurston’s eight 3D “model geometries”:

\[\mathbb{R}^3, \mathbb{S}^3, \mathbb{H}^3, \mathbb{S}^2 \times \mathbb{R}, \mathbb{H}^2 \times \mathbb{R}, \text{Nil}, \text{Sol}, \text{and} \quad \overline{\text{SL}(2,\mathbb{R})} \]

- Nil is \(H(\mathbb{R}) \) with its sub-Riemannian metric.
SIDEBAR: WHERE DOES SUBRIEMANNIAN GEOMETRY COME UP?

Thurston’s eight 3D “model geometries”:

\[
\mathbb{R}^3, \quad S^3, \quad \mathbb{H}^3, \quad S^2 \times \mathbb{R}, \quad \mathbb{H}^2 \times \mathbb{R}, \quad \text{Nil}, \quad \text{Sol}, \quad \text{and} \quad \hat{\text{SL}}(2, \mathbb{R})
\]

➤ Nil is \(H(\mathbb{R})\) with its sub-Riemannian metric.

➤ Complex hyperbolic space \(\mathbb{CH}^2\): horospheres have Nil geometry.
SIDEBAR: WHERE DOES SUBRIEMANNIAN GEOMETRY COME UP?

Thurston’s eight 3D “model geometries”:

\[\mathbb{R}^3, \ S^3, \ H^3, \ S^2 \times \mathbb{R}, \ H^2 \times \mathbb{R}, \ Nil, \ Sol, \ \text{and} \ \widehat{\text{SL}(2,\mathbb{R})} \]

- Nil is \(H(\mathbb{R}) \) with its sub-Riemannian metric.
- Complex hyperbolic space \(\mathbb{C}H^2 \): horospheres have Nil geometry.
- Higher-dimensional \(\mathbb{C}H^n \): horospheres are higher Heisenberg groups.
LATTICES IN THE LARGE: PANSU’S THEOREM
In \mathbb{Z}^2, asymptotic cones of word metrics are *polygonal* norms.
LATTICES IN THE LARGE: PANSU’S THEOREM

- In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms
In \mathbb{Z}^2, asymptotic cones of word metrics are \textit{polygonal} norms.
In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms
In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms.

Pansu’s thesis \Rightarrow in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms.

Pansu’s thesis \Rightarrow in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms.

\[
\text{spelling length of } g \over \|g\| \to 1
\]

Pansu’s thesis \Rightarrow in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms.

Pansu’s thesis \Rightarrow in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
LATTICES IN THE LARGE: PANSU’S THEOREM

- In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms

\[
\frac{\text{spelling length of } g}{\|g\|} \to 1
\]

- Pansu’s thesis \Rightarrow in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms.

Pansu’s thesis \Rightarrow in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
LATTICES IN THE LARGE: PANSU’S THEOREM

- In \mathbb{Z}^2, asymptotic cones of word metrics are **polygonal** norms.

- Pansu’s thesis \implies in $H(\mathbb{Z})$, asymptotic cones of word metrics are **polygonal** CC metrics.
SHAPES OF BALLS AND SPHERES
Pansu is telling you that CC spheres are a close approximation to spheres in the word metric.
Pansu is telling you that CC spheres are a close approximation to spheres in the word metric.
Pansu is telling you that CC spheres are a close approximation to spheres in the word metric.
Pansu is telling you that CC spheres are a close approximation to spheres in the word metric.
SHAPES OF BALLS AND SPHERES

➤ Pansu is telling you that CC spheres are a close approximation to spheres in the word metric.

➤ Should still wonder: are CC geodesics good approximations of geodesics in the word metric?

➤ The CC group is divided into two parts (the beelines/walls and the area-grabbers/roof). What about the discrete group?
GROMOV'S ASK: CC SPACES “FROM WITHIN”
What are the qualitative features of a CC metric? How would you know you are in one?
What are the qualitative features of a CC metric? How would you know you are in one?

- There’s a family of dilations.
What are the qualitative features of a CC metric? How would you know you are in one?

- There’s a family of dilations.
- Non-unique geodesics.
What are the qualitative features of a CC metric? How would you know you are in one?

★ There’s a family of dilations.
★ Non-unique geodesics.
★ Many dead ends.
What are the qualitative features of a CC metric? How would you know you are in one?

- There’s a family of dilations.
- Non-unique geodesics.
- Many dead ends.
- ...
What are the qualitative features of a CC metric? How would you know you are in one?

- There's a family of dilations.
- Non-unique geodesics.
- Many dead ends.
- ...

How about *polygonal* CC metrics on H?
What are the qualitative features of a CC metric? How would you know you are in one?

- There’s a family of dilations.
- Non-unique geodesics.
- Many dead ends.
- ...

How about polygonal CC metrics on H?

- Visually, from a basepoint, space is divided up into two regimes (walls and roof), with rational proportion: many “p/q laws.”
GROWTH SERIES AND RATIONALITY

Moon Duchin
Motivating example: The group \mathbb{Z}^2 has standard generators $(\pm 1, 0)$, $(0, \pm 1)$. There are also non-standard generators, like the chess-knight moves $(\pm 2, \pm 1), (\pm 1, \pm 2)$.
Motivating example: The group \mathbb{Z}^2 has standard generators $(\pm 1,0)$, $(0,\pm 1)$. There are also non-standard generators, like the chess-knight moves $(\pm 2, \pm 1), (\pm 1, \pm 2)$.

Fundamental question: How many group elements are “spellable” in $\leq n$ letters from the generating alphabet?
Motivating example: The group \mathbb{Z}^2 has standard generators $(\pm 1, 0)$, $(0, \pm 1)$. There are also non-standard generators, like the chess-knight moves $(\pm 2, \pm 1), (\pm 1, \pm 2)$.

Fundamental question: How many group elements are “spellable” in $\leq n$ letters from the generating alphabet?
GROWTH OF GROUPS

Motivating example: The group \mathbb{Z}^2 has standard generators $(\pm 1,0)$, $(0,\pm 1)$. There are also non-standard generators, like the chess-knight moves $(\pm 2,\pm 1),(\pm 1,\pm 2)$.

Fundamental question: How many group elements are “spellable” in $\leq n$ letters from the generating alphabet?

We can write $\beta_n=\#B_n$, $\sigma_n=\#S_n$ for the point count of balls and spheres in the word metric. As functions of n, these are called growth functions of (G,S) for a group G and generating set S.
GROWTH FUNCTIONS IN GROUP THEORY

Growth functions depend on generators \((G,S)\), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of \(G\), and so is exponential growth.
GROWTH FUNCTIONS IN GROUP THEORY

Growth functions depend on generators \((G,S)\), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of \(G\), and so is exponential growth.

<table>
<thead>
<tr>
<th>((G, S))</th>
<th>(\beta_n) ((n \gg 1))</th>
<th>(\sigma_n) ((n \gg 1))</th>
<th>recursion (\sigma_n =)</th>
<th>(S(x))</th>
<th>(\Omega)</th>
<th>(G_\Omega(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\mathbb{Z},\text{std}))</td>
<td>(2n + 1)</td>
<td>2</td>
<td>(\sigma_{n-1})</td>
<td>(\frac{1+x}{1-x})</td>
<td>(\square)</td>
<td>(2n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^2,\text{std}))</td>
<td>(2n^2 + 2n + 1)</td>
<td>4(n)</td>
<td>(2\sigma_{n-1} - \sigma_{n-2})</td>
<td>(\frac{1-x}{(1-x)^2})</td>
<td>(\diamond)</td>
<td>(2n^2 + 2n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^2, \text{hex}))</td>
<td>(3n^2 + 3n + 1)</td>
<td>(6n)</td>
<td>(2\sigma_{n-1} - \sigma_{n-2})</td>
<td>(\frac{1+4x+x^2}{(1-x)^2})</td>
<td>(\triangle)</td>
<td>(3n^2 + 3n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^2, \text{chess}))</td>
<td>(14n^2 - 6n + 5)</td>
<td>(28n - 20)</td>
<td>(2\sigma_{n-1} - \sigma_{n-2})</td>
<td>((1+x)(1+5x+12x^2-8x^4+4x^5)/(1-x)^2)</td>
<td>(\pentagon)</td>
<td>(14n^2 + 6n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^3, \text{std}))</td>
<td>(\frac{(2n+1)(2n^2+2n+3)}{3})</td>
<td>(4n^2 + 2)</td>
<td>(3\sigma_{n-1} - 3\sigma_{n-2} + \sigma_{n-3})</td>
<td>((1-x)^3)</td>
<td>(\star)</td>
<td>((2n+1)(2n^2+2n+3)/3)</td>
</tr>
<tr>
<td>((F_2,\text{std}))</td>
<td>(2 \cdot 3^n - 1)</td>
<td>(4 \cdot 3^{n-1})</td>
<td>(3\sigma_{n-1})</td>
<td>(\frac{1+x}{1-3x})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GROWTH FUNCTIONS IN GROUP THEORY

Growth functions depend on generators \((G,S)\), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of \(G\), and so is exponential growth.

<table>
<thead>
<tr>
<th>((G, S))</th>
<th>(\beta_n (n \gg 1))</th>
<th>(\sigma_n (n \gg 1))</th>
<th>recursion (\sigma_n =)</th>
<th>(S(x))</th>
<th>(\Omega)</th>
<th>(G_{\Omega}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((Z), std)</td>
<td>2(n + 1)</td>
<td>2</td>
<td>(\sigma_{n-1})</td>
<td>(\frac{1+x}{1-x})</td>
<td></td>
<td>2(n + 1)</td>
</tr>
<tr>
<td>((Z^2), std)</td>
<td>2(n^2 + 2n + 1)</td>
<td>4(n)</td>
<td>2(\sigma_{n-1} - \sigma_{n-2})</td>
<td>(\frac{(1+x)^2}{(1-x)^2})</td>
<td></td>
<td>2(n^2 + 2n + 1)</td>
</tr>
<tr>
<td>((Z^2), hex)</td>
<td>3(n^2 + 3n + 1)</td>
<td>6(n)</td>
<td>2(\sigma_{n-1} - \sigma_{n-2})</td>
<td>(\frac{1+4x+x^2}{(1-x)^2})</td>
<td></td>
<td>3(n^2 + 3n + 1)</td>
</tr>
<tr>
<td>((Z^2), chess)</td>
<td>14(n^2 - 6n + 5)</td>
<td>28(n - 20)</td>
<td>2(\sigma_{n-1} - \sigma_{n-2})</td>
<td>(\frac{(1+x)(1+5x+12x^2-8x^4+4x^5)}{(1-x)^2})</td>
<td></td>
<td>14(n^2 + 6n + 1)</td>
</tr>
<tr>
<td>((Z^3), std)</td>
<td>(\frac{(2n+1)(2n^2+2n+3)}{3})</td>
<td>4(n^2 + 2)</td>
<td>3(\sigma_{n-1} - 3\sigma_{n-2} + \sigma_{n-3})</td>
<td>(\frac{(1+x)^3}{(1-x)^3})</td>
<td></td>
<td>(\frac{(2n+1)(2n^2+2n+3)}{3})</td>
</tr>
<tr>
<td>((F_2), std)</td>
<td>2(3^n - 1)</td>
<td>4(3^{n-1})</td>
<td>3(\sigma_{n-1})</td>
<td>(\frac{1+x}{1-3x})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

One key tool used to study growth functions is their associated generating functions: treat \(\sigma(n)\) as sequence \(\sigma_n\) and study \(S(x) = \sum \sigma_n x^n\).
GROWTH FUNCTIONS IN GROUP THEORY

Growth functions depend on generators \((G, S)\), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of \(G\), and so is exponential growth.

One key tool used to study growth functions is their associated generating functions: treat \(\sigma(n)\) as sequence \(\sigma_n\) and study \(S(x) = \sum \sigma_n x^n\).

Fact: \(\sigma(n)\) satisfies a Fibonacci-style recursion iff \(S(x) \in \mathbb{Q}(x)\).
GROWTH FUNCTIONS IN GROUP THEORY

Growth functions depend on generators \((G,S)\), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of \(G\), and so is exponential growth.

One key tool used to study growth functions is their associated generating functions: treat \(\sigma(n)\) as sequence \(\sigma_n\) and study \(S(x) = \sum \sigma_n x^n\).

Fact: \(\sigma(n)\) satisfies a Fibonacci-style recursion iff \(S(x) \in \mathbb{Q}(x)\).
GROWTH FUNCTIONS IN GROUP THEORY

Growth functions depend on generators \((G,S)\), but change of genset preserves growth rate, so polynomiality (and degree) is an invariant of \(G\), and so is exponential growth.

One key tool used to study growth functions is their associated **generating functions**: treat \(\sigma(n)\) as sequence \(\sigma_n\) and study \(\mathbb{S}(x) = \sum \sigma_n x^n\).

Fact: \(\sigma(n)\) satisfies a Fibonacci-style recursion iff \(\mathbb{S}(x) \in \mathbb{Q}(x)\).
THEOREMS ABOUT GROUP GROWTH
THEOREMS ABOUT GROUP GROWTH

- Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: \(f \preceq g \) means
THEOREMS ABOUT GROUP GROWTH

- Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: $f \leq g$ means

$$\exists A \text{ s.t. } f(t) \leq Ag(At + A) + A \quad \forall t.$$
THEOREMS ABOUT GROUP GROWTH

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: $f \leq g$ means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.$$

If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.
THEOREMS ABOUT GROUP GROWTH

- Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: $f \preceq g$ means

$$\exists A \text{ s.t. } f(t) \leq Ag(At+A)+A \quad \forall t.$$

If $f \sim g$ means $f \preceq g, g \preceq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem (Bass-Guivarc’h 1970s): if LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus \text{finite}$, then $\beta(n) \sim n^d$ for $d = \sum i \cdot d_i$.
THEOREMS ABOUT GROUP GROWTH

- Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: \(f \preceq g \) means

\[
\exists A \text{ s.t. } f(t) \leq Ag(At+A)+A \quad \forall t.
\]

If \(f \sim g \) means \(f \preceq g, g \preceq f \), then \([\sigma]\) is a quasi-isometry invariant.

Theorem (Bass-Guivarc’h 1970s): if LCS of a nilpotent group has quotients \(G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus \text{finite} \), then \(\beta(n) \sim n^d \) for \(d = \sum i \cdot d_i \).
THEOREMS ABOUT GROUP GROWTH

- Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: $f \leq g$ means

 $$\exists A \ \text{s.t.} \ f(t) \leq Ag(At+A)+A \ \forall t.$$

 If $f \sim g$ means $f \leq g$, $g \leq f$, then $[\sigma]$ is a quasi-isometry invariant.

Theorem (Bass-Guivarc’h 1970s): if LCS of a nilpotent group has quotients $G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus \text{finite}$, then $\beta(n) \sim n^d$ for $d = \sum i \ d_i$.

- That is: **nilpotent groups have polynomial growth.**
THEOREMS ABOUT GROUP GROWTH

- Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: \(f \leq g \) means

\[\exists A \text{ s.t. } f(t) \leq Ag(At + A) + A \quad \forall t. \]

If \(f \sim g \) means \(f \leq g, g \leq f \), then \([\sigma]\) is a quasi-isometry invariant.

Theorem (Bass-Guivarc’h 1970s): if LCS of a nilpotent group has quotients \(G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus \text{finite} \), then \(\beta(n) \sim n^d \) for \(d = \sum i \cdot d_i \).

- That is: **nilpotent groups have polynomial growth.**

Theorem (Gromov 1981): if any group has a polynomial bound on growth, then it is virtually nilpotent!
THEOREMS ABOUT GROUP GROWTH

➤ Can study growth rate by imposing equivalence relation by affine rescaling of domain and range: \(f \ll g \) means

\[
\exists A \text{ s.t. } f(t) \leq Ag(At+A) + A \quad \forall t.
\]

If \(f \sim g \) means \(f \ll g, g \ll f \), then \([\sigma]\) is a quasi-isometry invariant.

\textbf{Theorem} (Bass-Guivarc’h 1970s): if LCS of a nilpotent group has quotients \(G_i/G_{i+1} = \mathbb{Z}^{d_i} \oplus \text{finite} \), then \(\beta(n) \sim n^d \) for \(d = \sum i \cdot d_i \).

➤ That is: \textbf{nilpotent groups have polynomial growth}.

\textbf{Theorem} (Gromov 1981): if any group has a polynomial bound on growth, then it is virtually nilpotent!
THEOREMS ABOUT RATIONALITY
THEOREMS ABOUT RATIONALITY

➤ Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)
Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational growth in any generators.*
THEOREMS ABOUT RATIONALITY

Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational growth in any generators.*

Theorem (M.Benson 1983): *Virtually abelian groups have rational growth in any generators.*
THEOREMS ABOUT RATIONALITY

- Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational growth in any generators.*

Theorem (M.Benson 1983): *Virtually abelian groups have rational growth in any generators.*

Theorem (Shapiro, Benson 1980s): *H(\mathbb{Z}) has rational growth in standard generators.*
THEOREMS ABOUT RATIONALITY

Many groups are known to have rational growth in a special generating sets, e.g. Coxeter groups (exercise in Bourbaki!)

Theorem (Cannon, Thurston, Gromov): *Hyperbolic groups have rational growth in any generators.*

Theorem (M.Benson 1983): *Virtually abelian groups have rational growth in any generators.*

Theorem (Shapiro, Benson 1980s): *$H(\mathbb{Z})$ has rational growth in standard generators.*

Theorem (Stoll 1996): *H_5 has rational growth in one generating set but transcendental in another!*
SUMMARY OF RATIONALITY RESULTS

<table>
<thead>
<tr>
<th>For all S</th>
<th>For at least one S</th>
<th>For no S</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyperbolic groups</td>
<td>some automatic groups</td>
<td>unsolvable word problem</td>
</tr>
<tr>
<td>virtually abelian groups</td>
<td>Coxeter groups, standard S</td>
<td>intermediate growth</td>
</tr>
<tr>
<td>Heisenberg group H</td>
<td>H, standard S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>H_5, cubical S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$BS(1,n)$, standard S</td>
<td></td>
</tr>
</tbody>
</table>

- Many more in middle category: some more $BS(p,q)$ examples plus “higher BS groups,” quotients of triangular buildings, some amalgams and wreath products, some solvable groups, relatively hyperbolic groups, ...
“We shall... show that the global combinatorial structure of such groups is particularly simple in the sense that their Cayley group graphs (Dehn Gruppenbilder) have descriptions by linear recursion. We view this latter result as a promising generalization of small cancellation theory... The result also indicates that cocompact, discrete hyperbolic groups can be understood globally in the same sense that the integers \(\mathbb{Z} \) can be understood: feeling, as we do, that we understand the simple linear recursion \(n \to n+1 \) in \(\mathbb{Z} \), we extend our local picture of \(\mathbb{Z} \) recursively in our mind’s eye toward infinity. One obtains a global picture of the arbitrary cocompact, discrete hyperbolic group \(G \) in the same way: first, one discovers the local picture of \(G \), then the recursive structure of \(G \) by means of which copies of the local structure are integrated.”
Let’s go back and see why lattice counts and Ehrhart polynomials were related to growth functions for \mathbb{Z}^2. You can get a coarse estimate of β_n by figuring out the shape of the cloud of points B_n and counting lattice points inside it.
WORD METRICS HAVE “LIMIT SHAPES” YOU CAN COUNT WITH

To see that you get an accurate first-order estimate from the Ehrhart polynomial, it suffices to show that almost all lattice points in the n^{th} dilate are reached in n steps.

This works well here; in general, the large spheres very closely resemble an annular shell at the boundary of your defining polygon.
<table>
<thead>
<tr>
<th>((G, S))</th>
<th>(\beta_n) ((n \gg 1))</th>
<th>(\Omega)</th>
<th>(G_{\Omega}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\mathbb{Z}, \text{std}))</td>
<td>2(n + 1)</td>
<td>—</td>
<td>2(n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^2, \text{std}))</td>
<td>2(n^2 + 2n + 1)</td>
<td>(\Diamond)</td>
<td>2(n^2 + 2n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^2, \text{hex}))</td>
<td>3(n^2 + 3n + 1)</td>
<td>(\Box)</td>
<td>3(n^2 + 3n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^2, \text{chess}))</td>
<td>14(n^2 - 6n + 5)</td>
<td>(\Box)</td>
<td>14(n^2 + 6n + 1)</td>
</tr>
<tr>
<td>((\mathbb{Z}^3, \text{std}))</td>
<td>(\frac{(2n+1)(2n^2+2n+3)}{3})</td>
<td>(\Diamond)</td>
<td>(\frac{(2n+1)(2n^2+2n+3)}{3})</td>
</tr>
<tr>
<td>((F_2, \text{std}))</td>
<td>2(\cdot 3^n - 1)</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
GROUP GROWTH MEETS LATTICE COUNTING

<table>
<thead>
<tr>
<th>(G, S)</th>
<th>$\beta_n \ (n \gg 1)$</th>
<th>Ω</th>
<th>$G_\Omega(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{Z}, std)</td>
<td>$2n + 1$</td>
<td></td>
<td>2n + 1</td>
</tr>
<tr>
<td>$(\mathbb{Z}^2, \text{std})$</td>
<td>$2n^2 + 2n + 1$</td>
<td>\Diamond</td>
<td>$2n^2 + 2n + 1$</td>
</tr>
<tr>
<td>$(\mathbb{Z}^2, \text{hex})$</td>
<td>$3n^2 + 3n + 1$</td>
<td>\Box</td>
<td>$3n^2 + 3n + 1$</td>
</tr>
<tr>
<td>$(\mathbb{Z}^2, \text{chess})$</td>
<td>$14n^2 - 6n + 5$</td>
<td>\Octagon</td>
<td>$14n^2 + 6n + 1$</td>
</tr>
<tr>
<td>$(\mathbb{Z}^3, \text{std})$</td>
<td>$\frac{(2n+1)(2n^2+2n+3)}{3}$</td>
<td>\Diamond</td>
<td>$\frac{(2n+1)(2n^2+2n+3)}{3}$</td>
</tr>
<tr>
<td>(F_2, std)</td>
<td>$2 \cdot 3^n - 1$</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Caveat: only accurate to first order!
GROUP GROWTH MEETS LATTICE COUNTING

<table>
<thead>
<tr>
<th>(G, S)</th>
<th>$\beta_n \ (n\gg1)$</th>
<th>Ω</th>
<th>$G_{\Omega}(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}, std</td>
<td>$2n + 1$</td>
<td></td>
<td>$2n + 1$</td>
</tr>
<tr>
<td>\mathbb{Z}^2, std</td>
<td>$2n^2 + 2n + 1$</td>
<td>\Diamond</td>
<td>$2n^2 + 2n + 1$</td>
</tr>
<tr>
<td>\mathbb{Z}^2, hex</td>
<td>$3n^2 + 3n + 1$</td>
<td>\Box</td>
<td>$3n^2 + 3n + 1$</td>
</tr>
<tr>
<td>\mathbb{Z}^2, chess</td>
<td>$14n^2 - 6n + 5$</td>
<td>\Pentagon</td>
<td>$14n^2 + 6n + 1$</td>
</tr>
<tr>
<td>\mathbb{Z}^3, std</td>
<td>$\frac{(2n+1)(2n^2+2n+3)}{3}$</td>
<td></td>
<td>$\frac{(2n+1)(2n^2+2n+3)}{3}$</td>
</tr>
<tr>
<td>F_2, std</td>
<td>$2 \cdot 3^n - 1$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
</tbody>
</table>

Caveat: only accurate to first order!
Theorem (Shapiro, Benson 1980s): The spherical growth of $H(\mathbb{Z})$, std is

$$\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$$

where $c_n = -7, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0$, repeating with period 12, for $n \geq 1$.
Theorem (Shapiro, Benson 1980s): The spherical growth of $H(\mathbb{Z})$, std is

$$\sigma_n = \frac{31n^3 - 57n^2 + 105n + c_n}{18},$$

where $c_n = -7, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0$, repeating with period 12, for $n \geq 1$.

This is called a quasipolynomial. Fact: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.
COUNTING IN THE HEISENBERG GROUP

Theorem (Shapiro, Benson 1980s): The spherical growth of $H(\mathbb{Z})$, std is

$$\sigma_n = \frac{31n^3 - 57n^2 + 105n + c_n}{18},$$

where $c_n = -7, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0$, repeating with period 12, for $n \geq 1$.

This is called a **quasipolynomial**. **Fact**: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.
Theorem (Shapiro, Benson 1980s): The spherical growth of $H(\mathbb{Z})$, std is

$$\sigma_n = \frac{(31n^3 - 57n^2 + 105n + c_n)}{18},$$

where $c_n = -7, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0$, repeating with period 12, for $n \geq 1$.

This is called a **quasipolynomial**. Fact: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (D-Shapiro arXiv): For any Heisenberg generators, the group growth function is eventually quasipolynomial.
Theorem (Shapiro, Benson 1980s): The spherical growth of $H(\mathbb{Z})$, std is

$$\sigma_n = (31n^3 - 57n^2 + 105n + c_n)/18,$$

where $c_n = -7, -14, 9, -16, -23, 18, -7, -32, 9, 2, -23, 0$, repeating with period 12, for $n \geq 1$.

This is called a quasipolynomial. Fact: if a sequence is polynomially bounded, then it has rational growth iff it is eventually quasipolynomial.

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

Theorem (D-Shapiro arXiv): For any Heisenberg generators, the group growth function is eventually quasipolynomial.

(not just bounded above and below like $An^3 \leq \sigma_n \leq Bn^3$, which is classical)
GAME PLAN FOR HEISENBERG PANRATIONALITY

➤ We produce a finite collection of languages that we call *shapes* and *patterns* that surject onto H.

➤ We show that there are “rational competitions” that determine a single shape or pattern as the “winner” for each group element.

➤ We show that enumerating the winning spellings by length is a rational function for each shape and pattern.

➤ Conclusion: overall growth function is a sum of finitely many rational functions, so it is rational.
MOTIVATING EXAMPLE: KNIGHTS ON AN INFINITE CHESSBOARD
MOTIVATING EXAMPLE: KNIGHTS ON AN INFINITE CHESSBOARD

Consider \mathbb{Z}^2 with chess-knight generators $\{(\pm 2, \pm 1), (\pm 1, \pm 2)\}$. Let $a_1 = (2,1)$, $a_2 = (1,2)$, and so on clockwise to a_8.
MOTIVATING EXAMPLE: KNIGHTS ON AN INFINITE CHESSBOARD

➤ Consider \mathbb{Z}^2 with chess-knight generators $\{(\pm 2, \pm 1), (\pm 1, \pm 2)\}$. Let $a_1 = (2, 1)$, $a_2 = (1, 2)$, and so on clockwise to a_8.

➤ Many elements in the sector $0 \leq y/2 \leq x \leq 2y$ bounded by a_1, a_2 can be written as linear combinations of those, but not all. For instance, $(1, 1) = a_3 a_8$ and $(2, 2) = a_3^2 a_8^2$ are geodesic.
Consider \mathbb{Z}^2 with chess-knight generators \{$(\pm 2, \pm 1), (\pm 1, \pm 2)$\}. Let $a_1 = (2, 1)$, $a_2 = (1, 2)$, and so on clockwise to a_8.

Many elements in the sector $0 \leq y/2 \leq x \leq 2y$ bounded by a_1, a_2 can be written as linear combinations of those, but not all. For instance, $(1, 1) = a_3 a_8$ and $(2, 2) = a_3^2 a_8^2$ are geodesic.

For that sector, 3 patterns suffice:

- $a_1^* a_2^*$
- $a_3 a_8 a_1^* a_2^*$
- $a_3^2 a_8^2 a_1^* a_2^*$
The patterns can be treated as functions $\mathbb{N}^2 \to \mathbb{Z}^2$ or as affine functions to position and length.
The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.

- $v = a_1^* a_2^*$ has length $p+q$, position $(2p+q, p+2q)$
The patterns can be treated as functions $\mathbb{N}^2 \to \mathbb{Z}^2$ or as affine functions to position and length.

- $v = a_1 a_2^*$ has length $p + q$, position $(2p + q, p + 2q)$
- $w = a_3 a_8 a_1 a_2^*$ has length $p + q + 2$, position $(2p + q + 1, p + 2q + 1)$
CHESS KNIGHTS AND RATIONAL COMPETITION

The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.

- $v = a_1^* a_2^*$ has length $p + q$, position $(2p+q, p+2q)$
- $w = a_3 a_8 a_1^* a_2^*$ has length $p + q + 2$, position $(2p+q+1, p+2q+1)$
- $x = a_3^2 a_8^2 a_1^* a_2^*$ has length $p + q + 4$, position $(2p+q+2, p+2q+2)$
The patterns can be treated as functions $\mathbb{N}^2 \to \mathbb{Z}^2$ or as affine functions to position and length.

- $v = a_1 a_2^*$ has length $p+q$, position $(2p+q, p+2q)$
- $w = a_3 a_8 a_1 a_2^*$ has length $p+q+2$, position $(2p+q+1, p+2q+1)$
- $x = a_3^2 a_8^2 a_1 a_2^*$ has length $p+q+4$, position $(2p+q+2, p+2q+2)$

When does each one “win” to express a point (a,b)? Depends on congruence class of $a+b \pmod{3}$.
CHESS KNIGHTS AND RATIONAL COMPETITION

- The patterns can be treated as functions $\mathbb{N}^2 \rightarrow \mathbb{Z}^2$ or as affine functions to position and length.
 - $v = a_1^{\ast} a_2^{\ast}$ has length $p+q$, position $(2p+q, p+2q)$
 - $w = a_3 a_8 a_1^{\ast} a_2^{\ast}$ has length $p+q+2$, position $(2p+q+1, p+2q+1)$
 - $x = a_3^2 a_8^2 a_1^{\ast} a_2^{\ast}$ has length $p+q+4$, position $(2p+q+2, p+2q+2)$

- When does each one “win” to express a point (a,b)? Depends on congruence class of $a+b \pmod{3}$.

- Let $G_w(n) = \{(a,b): w \text{ is smallest-indexed pattern to reach } (a,b) \text{ in length } n; \text{ no pattern reaches } (a,b) \text{ in length } < n\}$
The patterns can be treated as functions $\mathbb{N}^2 \to \mathbb{Z}^2$ or as affine functions to position and length.

- $v = a_1^* a_2^*$ has length $p+q$, position $(2p+q, p+2q)$
- $w = a_3 a_8 a_1^* a_2^*$ has length $p+q+2$, position $(2p+q+1, p+2q+1)$
- $x = a_3^2 a_8^2 a_1^* a_2^*$ has length $p+q+4$, position $(2p+q+2, p+2q+2)$

When does each one “win” to express a point (a,b)? Depends on congruence class of $a+b$ (mod 3).

Let $G_w(n) = \{(a,b) : w \text{ is smallest-indexed pattern to reach } (a,b) \text{ in length } n; \text{ no pattern reaches } (a,b) \text{ in length } < n\}$

Here, $G_w(n) = \{(n-1,2n-3), \ldots, (2n-3,n-1)\}$ for $n \geq 2$.
MAJOR TOOL: COUNTING IN POLYHEDRA

Let an elementary family \(\{E(n)\} \) in \(\mathbb{Z}^d \) be defined by finitely many equalities, inequalities, and congruences as below, where the \(b \) are affine in \(n \).

A **bounded polyhedral family** \(\{P(n)\} \) is a finite union of finite intersections of these in which each \(P(n) \) is bounded.

Theorem (Benson): if \(f: \mathbb{Z}^d \rightarrow \mathbb{Z} \) is polynomial and \(\{P(n)\} \) is a bounded polyhedral family, then

\[
F(x) = \sum_{n=0}^{\infty} \sum_{v \in P(n)} f(v) x^n
\]

is a rational function.
APPLICATION: HEISENBERG LATTICE COUNTING

Theorem (D-Mooney 2014): *For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.*
APPLICATION: HEISENBERG LATTICE COUNTING

Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.
Theorem (D-Mooney 2014): For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.

How to see this: Let the height of the sphere over a point in xy plane be $f(a,b)$; this is a quadratic polynomial on each quadrilateral region R of the footprint. Then the lattice point count in $\delta_n \mathcal{B}$ is given by
APPLICATION: HEISENBERG LATTICE COUNTING

Theorem (D-Mooney 2014): *For any Heisenberg generators, the number of lattice points in CC balls is quasipolynomial.*

How to see this: Let the height of the sphere over a point in xy plane be $f(a,b)$; this is a quadratic polynomial on each quadrilateral region R of the footprint. Then the lattice point count in $\delta_n B$ is given by

$$F(x) = \sum_n \sum_R \sum_{(a,b) \in nR} n^2 f(a/n, b/n) x^n$$
APPLICATION: CHESS-KNIGHT RATIONALITY
Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.

APPLICATION: CHESS-KNIGHT RATIONALITY
Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.

- e.g., for $w = a_3 a_8 a_1^* a_2^*$, we had $G_w(n) = \{(n-1, 2n-3), \ldots, (2n-3, n-1)\}$, $n \geq 2$.

APPLICATION: CHESS-KNIGHT RATIONALITY
Recall that \(G_w(n) \) is the set of \((a,b)\) where \(w \) is the winning pattern expressing \((a,b)\) geodesically at length \(n \).

- e.g., for \(w=a_3 a_8 a_1 a_2^* \), we had \(G_w(n) = \{(n-1, 2n-3), \ldots, (2n-3, n-1)\} \), \(n \geq 2 \).

Then the sum over \(w \) of \(|G_w(n)| \) will equal \(\sigma_n \), because it adds up the total number of positions reached geodesically at length \(n \). Equivalently, we sum 1 over \(G_w(n) \).
Recall that $G_w(n)$ is the set of (a,b) where w is the winning pattern expressing (a,b) geodesically at length n.

* e.g., for $w=a_3 a_8 a_1^* a_2^*$, we had $G_w(n)=\{(n-1,2n-3),\ldots,(2n-3,n-1)\}$, $n\geq 2$.

Then the sum over w of $|G_w(n)|$ will equal σ_n, because it adds up the total number of positions reached geodesically at length n. Equivalently, we sum 1 over $G_w(n)$.

\[
\mathbb{S}(x) = \sum_n \sigma_n x^n = \sum_n \sum_w \sum_{G_w(n)} x^n
\]
LEMMAS FOR HEISENBERG CASE

➤ Balancing Lemma: Busemann’s polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.
LEMMAS FOR HEISENBERG CASE

➤ **Balancing Lemma**: Busemann’s polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.

➤ **Shape Lemma**: every group element in the “roof” can be geodesically represented by something that fellow-travels an area-grabber CC geodesic.
LEMNAS FOR HEISENBERG CASE

- **Balancing Lemma**: Busemann’s polygon is isoperimetrically optimal, and area falls off quadratically when you unbalance the sidelengths.

- **Shape Lemma**: every group element in the “roof” can be geodesically represented by something that fellow-travels an area-grabber CC geodesic.

- **Pattern Lemma**: every group element in the “walls” can be geodesically represented by something that fellow-travels a beeline CC geodesic.
LEMMAS FOR HEISENBERG CASE

➤ **Balancing Lemma**: Busemann’s polygon is isoperimetricaly optimal, and area falls off quadratically when you unbalance the sidelengths.

➤ **Shape Lemma**: every group element in the “roof” can be geodesically represented by something that fellow-travels an area-grabber CC geodesic.

➤ **Pattern Lemma**: every group element in the “walls” can be geodesically represented by something that fellow-travels a beeline CC geodesic.

➤ **Competition Lemma**: a winning shape or pattern for each \((a,b)\) position is determined by finitely many linear equalities, inequalities, and congruences.
SUBTLETIES
There exist word geodesics that don’t fellow-travel any CC geodesic! But every group element is represented by some word geodesic that does. We prove this algorithmically, by starting with an arbitrary word geodesic and “balancing” it at the same total length.
There exist word geodesics that don’t fellow-travel any CC geodesic! But every group element is represented by some word geodesic that does. We prove this algorithmically, by starting with an arbitrary word geodesic and “balancing” it at the same total length.
There exist word geodesics that don’t fellow-travel any CC geodesic! But every group element is represented by some word geodesic that does. We prove this algorithmically, by starting with an arbitrary word geodesic and “balancing” it at the same total length.

The length and \((a,b)\) position of a shape are affine functions of the inputs, but the height \((c\) coordinate) is **quadratic**.
There exist word geodesics that don’t fellow-travel any CC geodesic! But every group element is represented by some word geodesic that does. We prove this algorithmically, by starting with an arbitrary word geodesic and “balancing” it at the same total length.

The length and \((a,b)\) position of a shape are affine functions of the inputs, but the height (\(c\) coordinate) is **quadratic**.

This is a big problem for writing down which group elements are represented by a shape: the rational competition doesn’t allow you to check a quadratic equation. Cute idea to get around this: when two shapes compete, the *difference* in their heights is a linear polynomial, so you ascertain that they reach the same height by checking \(linear=0\).
ASSEMBLING THE INGREDIENTS

\[S_{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^\Delta(n)} x^\Delta x^n, \]
ASSEMBLING THE INGREDIENTS

\[S^\text{reg}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^\Delta(n)} x^\Delta x^n, \]
ASSEMBLING THE INGREDIENTS

\[S^{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G^\Delta(\omega)} x^\Delta x^n, \]
ASSEMBLING THE INGREDIENTS

\[S^{\text{reg}}(x) = \sum_\omega \left(\sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^\Delta(n)} x^\Delta x^n, \right) \]

shapes | length | slack in the length
ASSEMBLING THE INGREDIENTS

\[S_{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\Delta}^\omega(n)} x^\Delta x^n, \]

shapes | length | slack in the length | positions (a,b) at which shape wins
ASSEMBLING THE INGREDIENTS

\[S^{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{w}^{\Delta}(n)} x^{\Delta} x^{n}, \]

shapes | length | slack in the length | positions (a,b) at which shape wins

\[S^{\text{uns}}(x) = \sum_{w} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{w}^{\Delta}(n)} p_{w}^{\Delta}(a, b) x^{\Delta} x^{n}, \]
ASSEMBLING THE INGREDIENTS

\[S^\text{reg}(x) = \sum_\omega \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_\omega^\Delta(n)} x^\Delta x^n, \]

- shapes
- length
- slack in the length
- positions (a,b) at which shape wins

\[S^\text{uns}(x) = \sum_w \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_w^\Delta(n)} p_w^\Delta(a, b) x^\Delta x^n, \]

patterns
ASSEMBLING THE INGREDIENTS

\[S^{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^\Delta(n)} x^\Delta x^n, \]

- shapes
- length
- slack in the length
- positions (a,b) at which shape wins

\[S^{\text{uns}}(x) = \sum_{w} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{w}^\Delta(n)} p_w^\Delta(a, b) x^\Delta x^n, \]

- patterns
- length
ASSEMBLING THE INGREDIENTS

\[S^{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_\omega^\Delta(n)} x^\Delta x^n, \]

- shapes
- length
- slack in the length
- positions (a,b) at which shape wins

\[S^{\text{uns}}(x) = \sum_{w} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_w^\Delta(n)} p_w^\Delta(a, b) x^\Delta x^n, \]

- patterns
- length
- slack
ASSEMBLING THE INGREDIENTS

\[S_{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^{\Delta}(n)} x^{\Delta} x^n, \]

- shapes
- length
- slack in the length
- positions \((a,b)\) at which shape wins

\[S_{\text{uns}}(x) = \sum_{w} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{w}^{\Delta}(n)} p_{w}^{\Delta}(a, b) x^{\Delta} x^n, \]

- patterns
- length
- slack
- positions \((a,b)\)
ASSEMBLING THE INGREDIENTS

\[S_{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^\Delta(n)} x^\Delta x^n, \]

shapes | length | slack in the length | positions (a,b) at which shape wins

\[S_{\text{uns}}(x) = \sum_{w} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{w}^\Delta(n)} p_w^\Delta(a, b) x^\Delta x^n, \]

patterns | length | slack | positions (a,b) | quadratically many c reached winningly
ASSEMBLING THE INGREDIENTS

\[S^{\text{reg}}(x) = \sum_{\omega} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{\omega}^\Delta(n)} x^\Delta x^n, \]

shapes | length | slack in the length | positions (a,b) at which shape wins

\[S^{\text{uns}}(x) = \sum_{w} \sum_{n=0}^{\infty} \sum_{\Delta=0}^{K} \sum_{G_{w}^\Delta(n)} p_{w}^\Delta(a, b) x^\Delta x^n, \]

patterns | length | slack | positions (a,b) | quadratically many c reached winningly

...et voilà.
GEOMETRY OF WORDS
ALMOST-CONVEXITY
Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.
Can define *almost-convexity*, a condition that lets you efficiently build out a Cayley graph.

\[\exists N \text{ s.t. for any pair of points on the sphere of distance } \leq 2, \text{ they are connected inside the ball by a path of length } \leq N. \]
ALMOST-CONVEXITY

➤ Can define *almost-convexity*, a condition that lets you efficiently build out a Cayley graph.

➤ AC(2): \(\exists N \) s.t. for any pair of points on the sphere of distance \(\leq 2 \), they are connected inside the ball by a path of length \(\leq N \).
ALMOST-CONVEXITY

» Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.

» AC(2): \(\exists N \text{ s.t. for any pair of points on the sphere of distance } \leq 2, \text{ they are connected inside the ball by a path of length } \leq N. \)

» TRUE for Heisenberg: first prove for polygonal CC metrics, then use bounded difference of word and CC.
Can define almost-convexity, a condition that lets you efficiently build out a Cayley graph.

AC(2): \(\exists N \) s.t. for any pair of points on the sphere of distance \(\leq 2 \), they are connected inside the ball by a path of length \(\leq N \).

TRUE for Heisenberg: first prove for polygonal CC metrics, then use bounded difference of word and CC.
What is the average distance between two points on a sphere?
What is the average distance between two points on a sphere?

Let $E(X) = \lim \frac{1}{n} \text{avg } d(x,y)$. Note $E \leq 2$ by triangle inequality.
What is the average distance between two points on a sphere?

Let \(E(X) = \lim_{n \to \infty} \frac{1}{n} \text{avg } d(x,y)\). Note \(E \leq 2\) by triangle inequality.
What is the average distance between two points on a sphere?

Let $E(X) = \lim_{n \to \infty} \frac{1}{n} \sum_{x,y \in S_n} d(x,y)$. Note $E \leq 2$ by triangle inequality.

Theorem (D-Lelièvre-Mooney): If X is a non-elementary hyperbolic group with any genset, then $E = 2$.
What is the average distance between two points on a sphere?

Let $E(X) = \lim_{n \to \infty} \frac{1}{n} \sum_{x,y \in S_n} d(x,y)$. Note $E \leq 2$ by triangle inequality.

Theorem (D-Lelièvre-Mooney): If X is a non-elementary hyperbolic group with any genset, then $E = 2$.

We get: all nilpotent groups have $E < 2$. Proof: CC sphere carries a limit measure that is absolutely continuous with Lebesgue, so there are positive-measure patches with $d(x,y)$ bounded away from $2n$.
ASYMPTOTIC DENSITY

➤ How likely is some behavior in H, or what are statistical invariants? If you can describe it geometrically, just integrate over CC ball.
How likely is some behavior in H, or what are statistical invariants? If you can describe it geometrically, just integrate over CC ball.

Example: geodesic stability, subgroup distortion, …
ASYMPTOTIC DENSITY

➤ How likely is some behavior in H, or what are statistical invariants? If you can describe it geometrically, just integrate over CC ball.

➤ Example: geodesic stability, subgroup distortion, …

Figure 6. The distortion profiles for $K = \{(*,0,*)\}$ in $H(\mathbb{Z})$ with two different generating sets. The value $d = 1$ is plotted as white, going red as $d \to \infty$.
DEAD ENDS
DEAD ENDS

- Dead end depth: distance from g to nearest longer g'.
Dead ends

- **Dead end depth**: distance from g to nearest longer g'.
- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have “deep pockets.” This property can depend on genset.
Dead end depth: distance from g to nearest longer g’.

Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have “deep pockets.” This property can depend on genset.

Retreat depth: how large must d be for g to be in an unbounded component of the complement of B_{n-d}?
Dead end depth: distance from g to nearest longer g'.

Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have “deep pockets.” This property can depend on genset.

Retreat depth: how large must d be for g to be in an unbounded component of the complement of B_{n-d}?

Lamplighters also have unbounded retreat depth.
Dead Ends

- **Dead end depth**: distance from g to nearest longer g'.

- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have “deep pockets.” This property can depend on genset.

- **Retreat depth**: how large must d be for g to be in an unbounded component of the complement of B_{n-d}?

- Lamplighters also have unbounded retreat depth.

- **Theorem** (Warshall): H has unbounded dead ends but bounded retreat depth in any genset.
Dead ends

- **Dead end depth**: distance from \(g \) to nearest longer \(g' \).

- Hyperbolic groups, Euclidean groups, and groups with more than one end all have bounded dead end depth. But lamplighter groups have “deep pockets.” This property can depend on genset.

- **Retreat depth**: how large must \(d \) be for \(g \) to be in an unbounded component of the complement of \(B_{n-d} \)?

- Lamplighters also have unbounded retreat depth.

- **Theorem** (Warshall): \(H \) has unbounded dead ends but bounded retreat depth in any genset.

- (But 25 pages of combinatorics can be replaced with a quick hit of CC geometry.)
EQUATION-SOLVING IN GROUPS
The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?
The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?

Theorem (D-Liang-Shapiro):
The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?

Theorem (D-Liang-Shapiro):
- Single equations are **decidable** in $H=N_{2,2}$.
The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?

Theorem (D-Liang-Shapiro):

* Single equations are **decidable** in $H=N_{2,2}$.

* Systems of equations are **undecidable** in H and all $N_{s,m}$, $s \geq 2$.
The equation problem: is there an algorithm that can decide whether solutions exist in a group to an equation given in constants and variables? A system of equations? A system of equations and inequations?

Theorem (D-Liang-Shapiro):

- Single equations are **decidable** in $H=N_{2,2}$.
- Systems of equations are **undecidable** in H and all $N_{s,m}$, $s \geq 2$.

Proof: use Mal’cev coordinates to reduce solvability to solving a quadratic equation over a lattice. OTOH, show that systems can encode arbitrary polynomials and quote Hilbert’s 10th problem!
MERCI