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Abstract. A group presentation is said to have rational growth if the gener-

ating series associated to its growth function represents a rational function. A
long-standing open question asks whether the Heisenberg group has rational

growth for all finite generating sets, and we settle this question affirmatively.

We also establish almost-convexity for all finite generating sets. Previously,
both of these properties were known to hold for hyperbolic groups and virtually

abelian groups, and there were no further examples in either case. Our main

method is a close description of the relationship between word metrics and as-
sociated Carnot-Carathéodory Finsler metrics on the ambient Lie group. We

provide (non-regular) languages of geodesics in any word metric that suffice to

represent all group elements.

1. Introduction

Growth functions of finitely-generated groups count the number of elements that
can be spelled as words in a generating alphabet, as a function of spelling length.
Though the functions themselves depend on a choice of generating set, they become
group invariants under the standard equivalence relation that allows affine rescaling
of domain—in particular, this preserves the property of having polynomial growth
of a particular degree.

It has been known since the early 1970s that all nilpotent groups have growth
functions in the polynomial range, in fact bounded above and below by polynomials
of the same degree, and the degree was computed by Bass and Guivarc’h indepen-
dently [1, 16, 17]. A breakthrough theorem of Gromov states that in fact any group
with growth bounded above by a polynomial is virtually nilpotent [14].

One can still wonder, however, whether the growth function is precisely polyno-
mial. This turns out to be a bit too much to ask for nilpotent groups. Virtually
abelian groups, for instance, have a more general property called rational growth:
no matter what finite generating set is chosen, the power series associated to the
growth function represents a rational function.

Hyperbolic groups have rational growth for all generators—this is an impor-
tant theorem from the early 1980s for which credit can be shared among Cannon,
Thurston, and Gromov [7, 8, 12, 15]. (This has an interesting history: Cannon’s ar-
gument for fundamental groups of closed hyperbolic manifolds directly generalized
to hyperbolic groups once that definition was in place. And Thurston’s definition of
automatic groups was partly motivated by these ideas.) At almost the same time,
Benson established the same result for virtually abelian groups [2]. Given the work
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at the time understanding the growth of nilpotent groups, it was a natural question
to ask whether nilpotent groups also have rational growth, which was open even
for the simplest non-abelian nilpotent group, the integer Heisenberg group. This
question was posed or referred to by many authors, including [18, 13, 3, 24, 20, 25].
By the late 1980s, Benson and Shapiro had independently established one piece
of this: the Heisenberg group has rational growth in its standard generators. We
settle the full question here.

Theorem 1. The Heisenberg group has rational growth for all generating sets.

In the process of establishing this fact, we will get quite precise information
about the combinatorial geometry of Heisenberg geodesics (Theorem 25) that will
be useful in the further study of the geometric group theory of H(Z), and should
therefore have applications to complex hyperbolic lattices with Heisenberg cusps.
We give remarks, applications (including almost-convexity), and open questions in
the last section.

1.1. Literature. Let us review what is known about rationality of growth in groups
and classes of groups.

For all S For at least one S For no S
hyperbolic groups some automatic groups unsolvable word problem

virtually abelian groups Coxeter groups, standard S intermediate growth
Heisenberg group H H, standard S

H5, cubical S
BS(1, n), standard S

Note that the inclusion of group with unsolvable word problem in the table
above is made under the assumption that the group is recursively presented. It is
apparently an open question whether a group that is not recursively presented can
have rational growth. A result either way should prove fascinating.

Automatic groups have rational growth when the automatic structure consists
of geodesics. In this case, there is a regular language of geodesics that bijects to
the group; this is used in [21] to study groups that act geometrically finitely on
hyperbolic space. There are more examples belonging in the middle category—
known to have rational growth in a special generating set—found in work of Barré
(quotients of triangular buildings), Alonso (amalgams), Brazil and Freden et al
(other Baumslag-Solitar groups), Johnson (wreath products and torus knot groups),
and others. For references and an excellent survey, see [13].

The nilpotent cases go as follows. As mentioned above, [3, 24] show that H
has rational growth in standard generators. In [25], Stoll proves the following
remarkable result: the higher Heisenberg group H5 has transcendental growth in
its standard generators, but rational growth in a certain dual generating set, which
we will call cubical generators. (See Sec 3.3 for a definition of H5.) On the other
hand, Stoll establishes the following theorem to use as a criterion for non-rational
growth.

Theorem 2 (Stoll [25]). If β(n)
α·nd → 1 and α is an irrational (resp. transcendental)

number, then B(x) =
∑
β(n)xn is a non-rational (resp. transcendental) function.

A volume computation gives α = 6027+2 ln 2
65610 , establishing that (H5, std) has tran-

scendental growth. Over fifteen years later, this (with small variations explained
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by Stoll) still provides the only known example of a group with both rational and
irrational growth series.
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2. Outline

2.1. Geometric overview. In this paper, we will give a way to compare geodesics
in the Cayley graph of H(Z) with geodesics in a geometrically much simpler con-
tinuous metric. We regard H(Z) ≤ H(R) as a subset and take R3 coordinates on
H(R). We can then treat spellings in the word metric as piecewise linear paths in
R3. We will show that every group element in H(Z) is reached by a geodesic spelling
that is boundedly close to a path from one of two families that are completely un-
derstood. Furthermore, since these comparison paths in R3 are determined by their
projection into R2, this ultimately allows us to use planar pictures to understand
geodesics in H(Z). The comparison geodesics are polygonal paths in normed planes
and are characterized by the relationship between their length and the area that
they enclose.

By an important theorem of Pansu [22], any word metric on the Heisenberg
group H(Z) is asymptotic to a left-invariant metric on its ambient Lie group H(R),
known as a Carnot-Carathéodory (cc) Finsler metric, which admits R3 coordinates.
(Pansu’s theorem is much more general, and was further generalized by Breuillard
in [4].) Several authors have studied the geodesics in these cc metrics, including
Krat, Stoll, Breuillard, and Duchin–Mooney, and we will stay close to the notation
of [11]. It is to Pansu’s cc geodesics, which come in “regular” and “unstable” types,
that we will compare our word geodesics. (See Section 3 for full background.) In
this language, the main geometric result of the paper (Theorem 25) is that for every
generating set on H(Z), there is a bound so that every group element has a geodesic
spelling that is boundedly close to a cc geodesic.

To show this, an important ingredient is to identify curves in normed planes that
are short relative to their enclosed area. A classical theorem of Busemann identifies
which the optimal polygonal curves, and we will need to analyze (in Section 4) how
the area falls off from optimality when the proportions of the polygonal curves are
perturbed.

2.2. Language-theoretic overview. The conclusion of the strategy can be de-
scribed in language-theoretical terms. Given a generating set S for H(Z), we de-
scribe two languages LS ,LP ⊂ S∗ (corresponding to the special families of geodesics
from the geometric description above) which have the following properties with re-
spect to H(Z) and its abelianization Z2.

The language LS is made up of images of finitely many “shapes,” which are
functions ω from domains in ZM to S∗. The language LP is made up of finitely
many “patterns” w that likewise map from domains in ZM to spellings in S∗. In
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both cases, the length ` of the spelling and its image in abelianization (a, b) ∈ Z2

are each affine functions of the ZM input. Properties of shapes and patterns are
established in Sections 5 and 6, respectively. This allows us to show in Section 7
that every group element has a geodesic spelling produced by these languages. That
is, if G is the language of geodesics in H(Z) with respect to S, then (LS ∪ LP) ∩ G
surjects onto H(Z) by evaluation.

Finally, we will prove a series of rational competition lemmas in Section 8. the
length and abelianization tell us when two shapes or patterns are candidates to
produce the same group element geodesically; when two candidates compete, the
winner can be identified by a linear inequality.

Putting these facts together, we find that the domain on which a shape or pattern
winningly represents a group element is determined by linear equalities, inequalities,
and congruences in ZM , and so counting the spellings enumerated by the shapes
amounts to solving congruences in rational polyhedra. By a marvelous theorem of
Benson [3], given here as Theorem 4, we are then done establishing the rationality of
the growth, because enumeration over rational polyhedra yields a rational function.

The final section records some other applications of this geometric/combinatorial
machinery, and offers some open questions.

2.3. Example: Shapes in Z2. To illustrate the idea of shapes of geodesics, con-
sider the example of Z2, first with standard generators a, b. Here, we will introduce
four shapes: amb−n, a−mbn, ambn and a−mb−n.

(I) ambn

(IV) amb−n

(II) a−mbn

(III) a−mb−n

Figure 1. Four shapes of geodesics for (Z2, std). (Take m,n ≥ 0
in each case.)

One quickly observes a few basic properties:

• There are finitely many shapes.
• Each shape is a language, and a map from a subset of some ZM to S∗.

(Here, M = 2 for each shape, and the domain is the first quadrant of Z2.)
• Every group element admits a geodesic spelling by at least one shape (even

though not every geodesic is realized this way).

This case is too simple to capture some features of the situation, so consider the
slightly more complicated case of Z2 with chess-knight generators {(±2,±1), (±1,±2)}.
Consider the case of geodesically spelling the group element (100, 100). If we la-
bel the generators counterclockwise with a1 = (2, 1) and a2 = (1, 2), then a33

1 a
33
2
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reaches the adjacent position (99, 99) in Z2, but an exact spelling—in fact a ge-
odesic spelling—requires two more letters: (a3a8)a33

1 a
33
2 . (This is because of the

well-known property of chess-knights that it takes several moves to arrive at an
adjacent square on the chessboard.) These correction terms never have more than
three letters, so we can arrive at a finite list of shapes: every shape has the form
x ·an1

i a
n2
i+1, where x is in the ball of radius three, ai and ai+1 are cyclically suc-

cessive generators, and n1, n2 ≥ 0. For a given shape, the length of the spelling
is `(x) + n1 + n2, and the position of its endpoint is the position of x plus the
n1, n2 combination of the positions of ai and ai+1. Also note that for large enough
words, two shapes can only compete to represent the same group element if their
indices i and i′ differ by at most one. Between two competitors, the winner can be
determined by checking whether the positions are equal and which was attained at
shorter length. (Assume that ties are broken for the lower-indexed shape in some
arbitrary order.)

Now we can add to the list of properties:

• A shape may not evaluate to a geodesic for every value of its arguments.
• The spelling lengths and positions of the evaluations of any shape or pattern

into Z2 are affine functions of n1, n2.
• Each shape has only finitely many possible competitors, and the positions

reached winningly by a shape at a given length are described by finitely
many linear equalities and inequalities.

This serves as a good roadmap for the sequence of features we will establish in
the Heisenberg group.

3. Background

3.1. Growth of groups. Suppose a group G is generated by the finite symmetric
generating set S = S−1. We take Sn to be the set of all (unreduced) strings of
length n in the elements of S (sometimes called spellings) and S∗ = ∪∞n=0S

n to
be the set of all spellings of any finite length. This S∗ comes equipped with two
important maps, spelling length and evaluation into G. Length, denoted `(γ), is
defined on γ ∈ Sn ⊂ S∗ via `(γ) = n. Evaluation into G is given by the monoid
homomorphism which carries concatenation in S∗ to group multiplication in G. An
element of S∗ can be thought of as a path in the Cayley graph Cay(G,S) from e to
the evaluation of γ.

We define the word length of a group element g ∈ G by

|g| = |g|S = min{`(γ) | γ ∈ S∗ and γ = g},
i.e., the shortest spelling length of any spelling.

The sphere and ball of radius n are denoted Sn, Bn respectively, and the associ-
ated growth functions are

σ(n) := #Sn = #{g ∈ G : |g| = n} ;

β(n) := #Bn = #{g ∈ G : |g| ≤ n} ,

related of course by σ(n) = β(n)−β(n−1). Then we can form associated generating
functions, called the spherical growth series and the growth series of (G,S), as
follows:

S(x) :=

∞∑
n=0

σ(n)xn ; B(x) :=

∞∑
n=0

β(n)xn.
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Since σ(n) ≤ β(n) ≤
∑n
i=0 |Si| =

∑
i=0 |S|i, the coefficients are bounded above

by an exponential, ensuring a positive radius of convergence for both series. We
recall that the growth rate of a group is well defined up to an equivalence relation
� given by linear rescaling of domain and range. This sets the stage for one of the
breakthrough theorems in the current explosion of geometric group theory, which
characterizes nilpotent groups by their growth: Gromov established in the early
1980s [14] that β(n) � nd if and only if the group is virtually nilpotent.

Instead of the rate of growth of β(n), it can also be productive to study its finer
arithmetic properties. We say that (G,S) has rational growth if the growth series
are rational functions: S(x),B(x) ∈ Q(x). (That is, if each is a ratio of polynomials
in x.) Note that the relationship between σ and β implies that (1−x)B(x) = S(x),
so either is rational iff the other is.

It is a standard fact that rationality of a generating function F (x) =
∑
f(n)xn is

equivalent to the property that the values f(n) satisfy a finite-depth linear recursion
for n� 1, i.e., there exist N0 and P such that for n > N0,

f(n+ P ) = a0 ·f(n) + a1 ·f(n+ 1) + · · ·+ aP−1 ·f(n+ P − 1).

(Here, the coefficients ai come from the same base field as the polynomials in the
rational function.)

The growth of a regular language is well known to be rational with integer
coefficients, and therefore the values σ(n) satisfy an integer recursion. In fact, this
recursion can be described in terms of the finite-state automaton which accepts the
language, and therefore can be written with non-negative integer coefficients in the
recursion. In the case of groups, if there is a generating set for which there is a
regular language of geodesics which bijects to the group, then the corresponding
growth function is rational. This can be used to prove rational growth for free
abelian groups and for word hyperbolic groups.

In this paper we focus on the integer Heisenberg group H = H(Z) and consider
its growth functions with various finite generating sets. Shapiro 1989 [24] shows
that for the standard Heisenberg generators S = std, there is no regular language
of geodesics for (H, std). Nevertheless, the growth function is rational [24, 3]. In
this paper, we will show the same holds for arbitrary generating sets.

3.2. Rational families. We now review material from Max Benson’s papers [2, 3],
articulating the principle that counting in polyhedra is rational.

Suppose we have a parameter n which we will take to lie in the non-negative in-
tegers and we consider sets of points E(n) ⊂ Zd defined by finitely many equalities,
inequalities, and congruences

ai · x = bi(n) ;

aj · x ≤ bj(n) ;

ak · x ≡ bk(n) (mod ck) ,

where each ai, aj and ak are in Zd, and each bi, bj and bk is an affine function of
n with integer coefficients. Such a sequence of sets {E(n)} is called an elementary
family. Benson defines a polyhedral family {P (n)} to be a finite union of finite
intersections of elementary families. If each P (n) is bounded, then {P (n)} is called
a bounded polyhedral family.
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For example, for the chess-knight language {a3a8a
n1
1 an2

2 : n1, n2 ≥ 0} described
in Section 2.3, the set of positions reached geodesically at length n is the (x, y) such
that x+y = 3n+1 and 0 ≤ x/2 ≤ y ≤ 2x, which is a (bounded) elementary family.

Lemma 3. The class of polyhedral families is closed under complementation, union,
intersection, and set difference.

Proof. This is clear for union, from the definition, and for intersection, by taking
the combined system of defining equalities, inequalities and congruences.

We now consider complementation. The complement of the solution set of an
equation is the disjoint union of the solution sets of two inequalities. For an in-
equality, the complement of its solution set is given by a single inequality. For
a congruence mod r, the complement of its solution set is the disjoint union of
solutions to r − 1 congruences.

Finally, set difference can be built with intersection and complementation. �

Note also that the class of polyhedral families is closed under affine push-forward;
if {P (n)} is a polyhedral family in Zd and g : Zd → Zm is an affine map, then
{g(P (n))} is a polyhedral family in Zm. The push-forward of a bounded family
is bounded. The pull-back of a bounded family is bounded if the linear part has
trivial kernel.

Theorem 4 (Counting over polyhedral families [2, 3]). Suppose that {P (n)} is
a bounded rational family in Zd and f : Zd → Z is a polynomial with integer
coefficients. Then

F (x) =

∞∑
n=0

∑
v∈P (n)

f(v)xn

is a rational function of x.

The hypotheses let you apply an arbitrary polynomial to the points of a family of
sets defined linearly; the special case that f is constant is the lattice point count in
the polyhedral family, so this theorem can be thought of as generalizing Ehrhart’s
theorem about lattice point counts in polyhedral dilates. We will need to apply
the theorem with a quadratic f , so we need its full strength. (We note that the
linearity in P (n) and the polynomiality in f can not be exchanged: enumeration
over regions defined by quadratics would not in general give a rational series.)

Benson’s counting theorem is a powerful tool and one of the few known methods
for establishing rationality of growth series. He used this theorem in [2] to show that
virtually abelian groups have rational growth with respect to arbitrary generating
sets, and he made partial progress extending his analysis to the Heisenberg group
in [3].

3.3. The Heisenberg groups. Most of this paper will focus on the Heisenberg
group H(Z), which is also the first in the family Hk, k = 3, 5, 7, . . . of two-step
nilpotent groups realized as
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1
1

1

1
1

1

Z Z Z

Z
Z0

0

inside the N × N matrices, where N = k+3
2 . (This parametrization has k as the

number of integer parameters in each matrix.) For i = 1, 2, . . . , N − 2, let ai be
the (1, i + 1) elementary matrix, let bi be the (N, i + 1) elementary matrix, and
write c for top-right elementary matrix. Then we have the commutator relations
[ai, bi] = c and all other commutators are trivial. Thus for any k, the commutator
subgroup is 〈c〉, so that the lower central series is

1 E Z E Hk.

The well-known Bass-Guivarc’h formula for the degree of polynomial growth in
nilpotent groups tells us that the growth function of Hk satisfies β(n) � nd for
d = (k − 1)·1 + 1·2 = k + 1.

For the Heisenberg group H(Z), we will drop the subscripts and write the ele-
mentary matrices as e1, e2, e3, so that [e1, e2] = e3 and [em1 , e

n
2 ] = emn3 . The standard

generating set for H(Z) is {e1, e2}±1, and from the above formula we know that the
growth function in these generators is bounded above and below by fourth-degree
polynomials.

3.4. Geometric model, spelling paths, and boost. We will use the exponential
coordinates on H(Z) ≤ H(R) given by the following representation:

(a, b, c)↔

1 a c+ 1
2ab

0 1 b
0 0 1

 .

These coordinates have the property that (a, b, c)n = (na, nb, nc), and in this nota-
tion e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

For integers a and b, define ε(a, b) to be 1/2 if a and b are both odd, and 0
otherwise. In these coordinates, H(Z) looks just like the standard lattice Z3 ⊂ R3

shifted by ε in the z direction, and the Haar measure on H(R) is Lebesgue measure
in R3.

The real Heisenberg group is equipped with a natural projection H(R)→ R2 via
the quotient by its center. In coordinates, this takes (x, y, z) 7→ (x, y). We will use
m to denote R2 with a norm, sitting in the tangent bundle TH(R).

Definition 5. A spelling path is a string of letters from any given generating set
S, i.e., an element of S∗, regarded as a path in the Cayley graph that represents
a group element from H(Z). (Assume these paths are based at the identity unless
specified otherwise.) Define `, (a, b), and z to be the length, horizontal position, and
height of γ, respectively: if the group element represented by γ is (a, b, c), then `(γ)
is the spelling length of the string, (a, b) ∈ m is the projection of the endpoint, and
the height of the group element and hence the path is z(γ) = c. Also let the shadow,
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denoted π(γ), be the projection to m (the path in m obtained by concatenating the
projections of the generators to m in the order of appearance in γ).

Define the area of a spelling path γ, denoted zA(γ), to be the balayage area of
its projection, that is, the signed area of the concatenation of π(γ) with the chord
between its endpoint and 0. The boost of a generating letter ai is its height z(ai).
Then the boost of a spelling, denoted zb(γ), is the sum of the boosts of the letters
in the spelling.

Note that the height of a spelling path is equal to its balayage area plus its boost:
z(γ) = zb(γ) + zA(γ).

Here is a brief example to track through the definitions in this section. Suppose a
generating set includes the letters a1 = (1, 2, 1) and a2 = (0, 1, 2). Then the spelling
path γ = a1a2 evaluates to (1, 3, 3.5), as one can check by matrix multiplication:(

1 1 2
0 1 2
0 0 1

)(
1 0 2
0 1 1
0 0 1

)
=
(

1 1 5
0 1 3
0 0 1

)
.

The path has length 2, horizontal position (1, 3), and height 3.5. Of that height, 3
units come from boost zb(γ) = zb(a1) + zb(a2) = 1 + 2 and the remaining height is
the area A(γ) = .5 of the triangle with vertices (0, 0), (1, 2), (1, 3).

3.5. cc metrics and Pansu’s theorem. As mentioned above, Pansu’s theorem
states that the large-scale structure of the Cayley graph (H,S) gives a metric on
H(R). This is not a Riemannian metric, but rather a sub-Finsler metric called a cc
metric. See [4, 11] for some explicit descriptions of the geometry of the limit metric,
and [10] for general background on sub-Riemannian geometry and the Heisenberg
group. We collect a few salient features here.

The cc metrics are defined as follows. Let m denote the horizontal subspace of

the Lie algebra h of H(R); that is, the span of the tangent vectors X =
(

0 1 0
0 0 0
0 0 0

)
and

Y =
(

0 0 0
0 0 1
0 0 0

)
at the identity, and identify m with the xy–plane in R3 in exponential

coordinates. We can regard m as a copy of R2 and make use of the linear projection
π : H(R)→ m given by (a, b, c) 7→ (a, b).

Fix a centrally symmetric convex polygon L ⊂ m; this uniquely defines a norm
‖ · ‖L on m for which L is the unit sphere. The push-forwards of m by left multipli-
cation give admissible planes 〈dLg(X), dLg(Y )〉 at every point g ∈ H(R), which are
similarly normed; the plane field is a sub-bundle of the tangent bundle to H(R).
We say that a curve in H(R) is admissible if it is piecewise differentiable and all of
its tangent vectors lie in these normed planes. The length of an admissible curve is
simply the integral of the lengths of its tangent vectors, and it is easily verified that
this is the same as the length in the L–norm of the projection π(γ), and that any
two points are connected by an admissible path. Then the cc distance dcc(x, y) is
(well-)defined as the infimal length of an admissible path between x and y. One
easily checks that this is a geodesic metric.

In exponential coordinates, all cc metrics are equipped with a dilation δt(a, b, c) =
(ta, tb, t2c) that is a metric similarity, scaling lengths and distances by t, areas in
m by t2, and volumes by t4.

Pansu also tells us which polygon L is induced by a generating set S: namely,
L is the boundary of the convex hull of the projection π(S) of the generators to
m. For example, the two most basic generating sets for H(Z) are {e1, e2}± and
{e1, e2, e3}±. In either case, the cc metric is induced by the L1 norm on m. By
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contrast, if one took the nonstandard generators {e1, e2, e1e2}±, the polygon would
be a hexagon L = .

In this language, we can state this special case of Pansu’s theorem as follows:
for any finite symmetric generating set S of H(Z),

lim
x→∞

dcc(x, 0)

|x|S
→ 1.

While Pansu’s result extends to a statement for all nilpotent groups, there is
a substantial strengthening due to Krat [19] which was shown only in the case of
H(Z): there is a global bound (depending on S) in the additive difference between

word and cc lengths: supx

∣∣∣dcc(x, 0)−|x|S
∣∣∣ <∞. In Section 5.2, we will give a new

proof of Krat’s (and therefore Pansu’s) result for H(Z). We note that Breuillard
([4]) has shown that bounded difference does not hold for all 2-step nilpotent groups,
though on the other hand he has explained to us that arguments from [5] can be
adapted to show bounded difference for all of the higher Heisenberg groups.

3.6. Significant directions, isoperimetrices, structure of cc geodesics. It is
a standard fact in Heisenberg geometry that for any admissible path γ based at the
origin 0 ∈ H(R), the height or z coordinate of γ(t) is equal to its balayage area: the
signed (Lebesgue) area enclosed by the concatenation of the curve’s shadow π(γ)
with a straight line segment connecting its endpoints. This is a simple consequence,
via Stokes’ Theorem, of the fact that the description of the horizontal planes ensures
that γ′3 = 1

2 (γ1γ
′
2 − γ2γ

′
1).

As a consequence of the connection between height and balayage area, we have
a criterion for geodesity in the cc metric: a curve γ in m based at (0, 0) lifts to
a geodesic in H(R) iff its L-length is minimal among all curves with the same
endpoints and enclosing the same area. As a result, to classify geodesics one uses
the solution to the isoperimetric problem in the normed plane (m, ‖ · ‖L). By a
classical theorem of Busemann from 1947 [6], the solution is described in terms of
a polygon which he called the isoperimetrix.

Definition 6. For a finite symmetric generating set S, let Q = CHull(π(S)) be the
convex hull of the projection of S to m and let L be its boundary polygon, as above.
The polar dual of Q is defined as Q∗ = {v ∈ m : v · x ≤ 1 ∀x ∈ Q} with respect
to the standard dot product. Busemann’s isoperimetrix is the polygon ∂(eiπ/2Q∗),
obtained by rotating the polar dual of Q through a right angle.

Definition 7. The vertices of the polygon L will be labelled cyclically as a1, . . . , a2k

and these vectors will be called significant directions. For the significant directions,
we will extend the subscripts periodically by defining am to equal an if m ≡ n
(mod 2k).

Each significant direction is the shadow of at least one significant generator in
S and we will label the generators projecting to ai as ai, a

′
i, a
′′
i , etc. Elements of

S which project to the edges of L are called edge letters and those that project
properly inside L are called interior letters.

Remark. We will maintain this font distinction as much as possible to mark the
difference between group elements a ∈ H and their corresponding projections a ∈ m,
the latter thought of as vectors in the plane.
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With this terminology, Busemann’s theorem can be stated as follows. Use
Lebesgue measure on R2 for area; use length in the Minkowski norm for perimeter.
Then up to dilation and translation the isoperimetrix is the unique closed curve
realizing the maximal value of area divided by perimeter-squared. The following
properties follow from Busemann’s construction.

• If the vertices of Q have rational coordinates, then the same is true of the
vertices of the isoperimetrix.
• The edges of the isoperimetrix are parallel to the significant directions.

It follows that by clearing common denominators we can find positive integers
σ1, . . . , σ2k with gcd = 1 and an integer λ such that the edge vectors of λ∂(eiπ/2Q∗)
are σiai.

Definition 8. Define the standard isoperimetrix to be the closed polygon I = I(S)
having vertices

0, σ1a1, σ1a1 + σ2a2, . . .

(This is a translated and scaled copy of Busemann’s curve.)

a1

a2a3

L

I

0 a1

2a2

2a3

Figure 2. This example shows an isoperimetrix which is twice the
rotated polar dual of the original polygon. Here I has perimeter 10,
measured in the L–norm, and it is the unique shape maximizing
area at that perimeter (up to translation).

cc geodesics based at 0 are classified in [11] into two kinds: regular geodesics,
which project to m as an arc of an isoperimetrix, and unstable geodesics, which
project to m as geodesic in the L–norm.

Fix a polygon L in m, which determines a cc metric on H(R). Then for any
(a, b) ∈ m, each length ` ≥ ‖(a, b)‖L uniquely determines a height c = c(a, b, `) ≥ 0
so that there exists a regular geodesic connecting 0 to (a, b, c) at length `. That
is, for each ` there exists a scale s and a translation vector q so that sI + q passes
through 0 and (a, b); the subarc between those two points has length ` with respect
to L and encloses area c, and it lifts to a cc geodesic. On the other hand if
` = ‖(a, b)‖L, there are L–norm geodesics connecting 0 to (a, b) with length `, and
these can enclose any area in an interval of possibilities.

The term “stable geodesics” is borrowed from the notion of “stability of geodesics”
meaning that for each pair of endpoints, geodesics between the endpoints fellow
travel with some fixed constant (as in the Morse Lemma in hyperbolic geometry).
With limitted exceptions, our stable geodesics will fellow travel in projection. Here,
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cc geodesics of the second type are called “unstable” because they are highly non-
unique and geodesics for nearby points, or even the same point, can fail to fellow
travel arbitrarily badly.

4. Paths in planar norms

Below, we will use multiplicative vector notation for polygonal paths in the plane,
so that for instance vt1v2v1 denotes the concatenated path obtained by starting
with the vector tv1 followed by the vector v2 followed by the vector v1, with total
displacement vector (t+1)v1 +v2 from beginning to end. In this path notation, the
exponents need not be integers. We will be considering areas of polygonal paths,
where we will define the area of a not-necessarily-closed path to be its balayage
area: the signed area enclosed by concatenating the path with the chord from its
endpoint to its start point.

The path P = v1v2 . . . vr represents a closed polygon if
∑

vi = 0; it is convex
if the vectors v1, . . . , vr are cyclically ordered (that is, if their arguments proceed
in a monotone fashion once around the circle) and strictly convex if and only if
no two cyclically successive vectors are parallel. For a fixed polygonal norm, the
associated isoperimetrix can be written in this notation with r = 2k and vi = aσii ,
where the ai are extreme points in the polygon that is the norm’s unit ball and
the σi are integers described in the previous section. If P = v1v2 . . . vr arises as
an isoperimetrix, then it is strictly convex, centrally symmetric, and its sides have
lengths induced by the norm, which we will denote `i = ‖vi‖. In this section we
will make several elementary geometric arguments about polygons and polygonal
paths, particularly those arising as isoperimetric polygons.

Given a polygonal norm and its isoperimetrix P = v1 . . . vr, define a Busemann
arc to be a simple path based at 0 which is a subarc of some scaled and translated
copy of P . With the convention of reading indices mod r, these are precisely given

by polygonal paths of the form τ = vs
−

i vsi+1 . . . v
s
j−1v

s+

j with at most r + 1 terms,

satisfying 0 ≤ s−, s+ ≤ s (and s− + s+ ≤ s if there are r + 1 terms).
In this case we will say that τ has scale s and (combinatorial) type (i, j). There

are two possible ambiguities: first, if τ is one- or two-sided, the scale is under-
determined, so we take s to be the maximum exponent. Second, if s− or s+

equals 0 or s, then the arc is of more than one combinatorial type; for instance,
v100

3 v100
4 v32

5 is of types (2, 5) and (3, 5). Note that the length of τ in the norm is
s−`i + s`i+1 + · · ·+ s+`j.

In the special case of a Busemann arc τ = vs
−

i vsi+1 . . . v
s
i−1v

s+

i of type (i, i), a

weight-shifted arc is any τ̂ = vt
−

i vsi+1 . . . v
s
i−1v

t+

i where t− + t+ = s− + s+. For a
closed P–arc τ = vsi v

s
i+1 . . . v

s
i−2v

s
i−1 of type (i, i − 1), a cyclic permutation of τ is

τ̄ = vsjv
s
j+1 . . . v

s
i−2v

s
i−1v

s
i v
s
i+1 . . . v

s
j−1 for any j, which can be achieved by iterated

weight shifting. Note that these moves preserve area and endpoint (see Figure 3).
These definitions enable us to observe, as a consequence of Busemann’s theorem,

that isoperimetric arcs in a norm (arcs that enclose maximum area among all arcs
of a fixed length) are Busemann arcs, and if any two exist with the same length
and endpoint, then they must differ by weight shifting or cyclic permutation. (This
follows from the convexity of P ; see Duchin–Mooney for details.)

For a polygonal path P = v1v2 . . . vr, we can consider the parallel family

{Ps = vs11 vs22 . . . vsrr : s = (s1, . . . , sr) ∈ Rr} .
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0

0

Figure 3. Weight shifting (left) and the special case of cyclic
permutation (right).

We say that P = v1 . . . vr is in positive position with respect to λ and w if there is
a Busemann arc in the parallel family {Ps : si ≥ 0}. (As long as λ ≥ ‖w‖, this can
always be ensured by cyclically permuting the order of the vectors if necessary.)
Within a parallel family, the Busemann arc for λ,w is unique if it exists, because
there are never two paths in the same family that differ by nontrivial weight-shifting.

We can define a displacement vector w(Ps) =
∑
sivi, and if we are given weights

`i > 0 (such as the norm-lengths above) we can also define a weighted perimeter
p(Ps) =

∑
si`i. Restricting the parallel family by perimeter λ > 0 and displacement

w ∈ R2, we write

M(λ,w) := {s ∈ Rr : p(Ps) = λ, w(Ps) = w} ; M(λ,w) := M(λ,w) ∩ [0,∞)r.

Note that M is an affine subspace of codimension three in Rr (the perimeter and the
two coordinates of the displacement describe affine hyperplanes). M is therefore a
polytope (in fact a simplex) where on each boundary face, some of the si = 0. If P is
a closed polygon, then M(λ, 0) consists of closed polygons with the same perimeter
obtained by moving the sides of P parallel to themselves, so that whenever a pair
of successive sides have positive lenths, they have the same interior angles. Thus,
for a square, {Ps | s ∈M(λ, 0)} consists of a set of rectangles, though some of these
are degenerate.

Lemma 9 (Isoperimetric optimality). If P = v1v2 . . . vr is an isoperimetrix with
`i = ‖vi‖ in the associated norm, then for any λ > 0 the function Area(Ps) is
quadratic on M(λ, 0) and concave down about a unique local maximum on the
interior of M(λ, 0). If P is in positive position with respect to some λ,w, then the
same is true on M(λ,w); that is, there are affine coordinates x = x(s) such that
the area can be written as a negative-definite pure quadratic polynomial plus a
constant:

Area(Ps)
∣∣
M(λ,w)

= A−
r−3∑
i=1

βix
2
i .

Here A = A(λ,w) but the βi > 0 are independent of λ and w.

Proof. To see that the function is quadratic, note that any Ps can be triangulated
by drawing chords from each vertex to the origin, and that the triangle with side vi
has area given by half the determinant of the matrix with columns

∑i−1
j=1 sjvj and∑i

j=1 sjvj . By bilinearity, this expands to a quadratic in the si.
First consider the case w = 0. Busemann’s theorem ensures that the unique

global max in any M(λ, 0) occurs at smax
λ,0 = ( λ

r`1
, . . . , λ

r`r
), which is on the interior

because no coordinate is zero. The Hessian of area is symmetric, so diagonalizable,
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and this induces a change of basis so that the area is a function of the squares of the
new variables. The existence of a unique maximum on M(λ, 0) ensures that it can
be written Area(Ps)|M(λ,0) = A −

∑
βix

2
i for βi > 0, where x = x(s) is an (r − 3)-

dimensional coordinate system centered around this maximum. Since M(λ, 0) is
the smallest affine subspace containing M(λ, 0), the restriction Area(Ps)|M(λ,0) is

given by the same quadratic function.
Note also that since the M(λ, 0) are mutually parallel affine subspaces we can

use the same coordinate directions x on each M(λ,w). To see this, consider
M(ρλ, 0) = ρM(λ, 0). Let s0 = sλ,0. Then ρsmax

λ,0 = smax
ρλ,0 realizes the maximum

area on M(ρλ, 0). We have

Area(Pρs)|M(ρλ,0) = ρ2
(
Area(Ps)|M(λ,0)

)
= ρ2A−

∑
βi(ρxi)

2.

Thus the constant term Aλ,0 scales quadratically but the eigenvalues and eigendi-
rections surrounding the maximum are preserved.

Now let w ∈ R2 be arbitrary and let β be the Busemann arc of length λ ending
at w. Choose γ such that the concatenation β.γ equals tP + k, a complete copy
of the isoperimetrix. Then for any path Ps reaching w with perimeter λ, the area
Area(Ps) + Area(γ) is uniquely optimized at Ps = β and it is quadratic in s and
thus concave down in affine coordinates x = x(s) centered at this maximum. We
conclude that Area(Ps)

∣∣
M(λ,w)

= A −
∑
βix

2
i . On the other hand, Area(Ps.γ) =

Area(Ps)+Area(γ). Thus Area(Ps) on M(λ,w) differs by a constant from the area in
the closed family containing Ps.γ, so we can appeal to the closed case λ′ = λ+ `(γ),
w′ = 0 to conclude the proof. �

For example, let P be the unit square with all `i = 1. Then with no constraint
on perimeter or closedness, we would have

Area(Ps) =
1

2
(s1s2 + s2s3 − s1s4 + s3s4) .

Closedness forces s1 = s3, s2 = s4, and the perimeter constraint λ = 4 forces
s2 = 2 − s1, giving Area(Ps) = 2s1 − s2

1. This has unique max at s1 = 1, and in
coordinates centered at the max (namely x = s1 − 1) the area is 1− x2.

It will also be useful below to allow the parallel family to deviate from the
isopermetrix by a finite amount at the corners. Given P = v1v2 . . . vr, we can fix a
list C = (c0, . . . , cr) of finite-length polygonal paths ci called corner paths. We can
write wi for the displacement vector of path ci from beginning to end, and write pi
for a constant associated to each (if P is the isoperimetrix for a norm, then take
pi to be the length of ci in the norm). Then define the general parallel family of P
relative to C to be

{γs = c0v
s1
1 c1v

s2
2 . . . cr−1v

sr
r cr : s ∈ Rr}

and define displacement vectors w(γs) = (
∑
sjvj) + (

∑
wj) and perimeters p(γs) =∑

si`i +
∑
pi. With C fixed we will use the same notation M(λ,w) and M(λ,w)

from above to define the feasible regions with si ∈ R and si ≥ 0 respectively.
To apply our convex geometry results back to the discrete group, we will need

to restrict to integer parameters si. Our next goal will be to establish that even
allowing for corner paths and with an arbitrary linear boost added to area, optimal
area in the integer lattice occurs with proportions that are close to those from P .
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If a path γs has the form

γs = ci−1v
si
i civ

si+1

i+1 . . . cj−1v
sj
j cj

with j − i ≥ 2 and the other si = 0, we will call it balanced if there exists t > 0
such that si, sj ≤ si+1 = si+2 = · · · = sj−1 = t; this is the case in which, if the
corner words were removed, the path has the right proportions to belong to tP
as a sub-arc. More generally γs is K–almost balanced if all of these equalities and
inequalities hold within K, i.e., |si − sj | ≤ K for i < i, j < j and si, sj ≤ si + K
for all i < i < j.

Lemma 10 (Balancing paths). Fix an isoperimetrix P = v1v2 . . . vr with integer
vertices, any vector (k1, . . . , kr) ∈ Rr, and corner paths c0, . . . , cr, and consider
all of the possible Ps. Then there is a constant K such that for any λ and w
with Zr ∩M(λ,w) 6= ∅, the maximum value of f(s) = Area(γs) +

∑r
i=1 kisi over

s ∈ Zr ∩M(λ,w) occurs at paths that are K–almost balanced.

Proof. We claim that the case of no boost (ki = 0) and no corners follows quickly
Lemma 9: Since Area(Ps) = A −

∑
βix

2
i , the level sets in each feasible region

M(λ,w) are ellipsoids of the same eccentricity; that is, there is a ρ such that
ellipsoids of diameter ρd have an inscribed ball of radius d. Also, the `i and the
coordinates of the vi are all rational, so since Zr was assumed to intersect the
affine subspace, it must do so in a lattice, and we can choose fundamental domains
having a diameter ∆ that is independent of λ,w. By choosing d ≥ ∆, we can be sure
that the ellipsoid contains a lattice point. This may not be the smallest ellipsoid
containing a lattice point, but it ensures that all lattice points on the smallest such
ellipsoid are at distance no greater than ρ∆/2 from the center of coordinates.

Next we allow a nonzero linear term f(s) = Area(γs) +
∑
kisi. Given an expres-

sion βs2 + ks, “completing the square” via the shift x = s − k
2β transforms it to

βx2− k2

4β . Thus, the maximum for−βs2+ks occurs at x = 0. The βi and ki are fixed.

Hence these x coordinates differ from the s coordinates by a bounded amount, so
this maximum occurs at a bounded distance from the maximum of Area(Ps). Note
that the nearest integer point may have some negative coordinates, but comparing
the ellipse eccentricities to the fundamental domains as above shows that the best
point with non-negative coordinates is again boundedly far away. Since area is
maximized at a balanced arc, we have shown that the non-negative integer max for
f(s) is nearly balanced.

Finally, adding the corner paths changes very little. Each interior corner ci can
be “straightened” (replacing it with whatever αivi + α′ivi+1 has the same displace-
ment vector) and it contributes a fixed amount to area relative to its straightening,
independent of s. As for the initial and final corners: if w is the displacement vector
of ci−1γcj, then w− ci−1− cj is the displacement vector of γ, and the difference in
area is independent of γ. All corners also make a fixed contribution to perimeter.
Therefore the solution for the path with corners is gotten by shifting the solution
for a corner-free path with adjusted perimeter and displacement. �

Remark. This is the first of several places where something is shown to be bounded
with reference to a constantK. To avoid proliferating notation, we will maintain the
symbolK in each successive place that a constant bound is derived, enlarging it each
time as necessary. No earlier statement will be hurt by subsequent enlargement, so
that in the end one value of K depending only on S will suffice for all applications.
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Finally we establish a lemma on the combinatorial types of arcs.

Definition 11. Fix P = v1v2 . . . vr−1vr. A P–arc τ of scale s is a path vs
−

i vsi+1 . . . v
s
j−1v

s+

j
(with the indices considered cyclically) where 0 ≤ s−, s+ ≤ s, and its combinatorial
length is the sum of the exponents, L(τ) = s− + (j − i − 1)s + s+. Note that τ
begins at the origin and lies on a scaled and translated copy of P , i.e., τ ⊂ sP + r.
The combinatorial type of τ is the pair (i, j) of starting and ending sides.

Given K > 0, we say that the arc K–almost has combinatorial type (i, j) if it
can be modified to an arc of combinatorial type (i, j) by adjusting s+ and s− by at
most K (possibly making them equal either 0 or s to change type). If there is (i, j)
so that τ and τ ′ both K–almost have combinatorial type (i, j), we say that they
K–almost have the same combinatorial type.

Lemma 12 (Combinatorial types of nearby arcs). Fix K1,K2 > 0. Then there are
K3, K4 with the following property. If τ and τ ′ are P–arcs (based at the origin)
whose combinatorial lengths are within K1 and whose endpoints are within distance
K2, then their scales differ by at most K3. Further, after possible weight-shifting
and cyclic permutation, the arcs K4–fellow travel.

Proof. Suppose τ is a P–arc with endpoint (a, b) ∈ R2, and the length of τ is L.
Using convexity of P , we will see that there are only very limited ways to find (a, b)
as a chord with given arclength in a scaled P , and this restricts the shape of τ .

If (a, b) = (0, 0) and τ is nonempty, it can only be a translate of P containing
the origin. Thus for endpoints near (0, 0), the arc is either very short or is nearly
of type (i, i) for some i, with a scale roughly determined by the length. If one is of
nearly of type (i, i) and the other is of type (j, j), then weight-shifting followed by
cyclic permutation suffices to make them fellow-travelers.

If (a, b) is a nonzero multiple of some vi and L is sufficiently long relative to
(a, b), then the P–arc must be of type (i, i). In this case there is clearly a family of
polygons with the same (a, b, L) and type (i, i) obtained by shifting weight between
s− and s+, and these are the only solutions to the chord problem. So if one of
the arcs, say τ , has an endpoint precisely on the vi direction, then it admits a
weight-shifted family of P–arcs and by choosing the right one we can match τ ′.

The only remaining cases are that (a, b) is a nonzero vector which is not parallel
to any vi or that L is short relative to (a, b). In either of these cases the triple (a, b, L)
uniquely determines not only s but determines τ completely (by convexity of P ),
and the starting side and ending side are different (i 6= j). Within a combinatorial
type, the scale s is a linear function of (a, b, L), and indeed it is piecewise linear (and
continuous) across combinatorial types as (a, b) varies over the sector between any
successive vi, vi+1. (See Duchin–Mooney for details and examples.) Being far from
the origin forces arcs with nearby endpoints to be nearly of the same combinatorial
type, and so they fellow travel. �

5. Shapes

5.1. Simple shapes and highest height. Suppose u, v ∈ H(Z) project to integer
vectors u, v ∈ m. We write u∧v to denote the determinant of the matrix with those
column vectors, i.e., the area of the parallelogram they define. Then when letters u
and v are exchanged, the effect on area is given by the wedge: z(uv) = z(vu)+u∧v.
For instance, z(e1e2) = 1

2 ; z(e2e1) = − 1
2 ; and e1 ∧ e2 = 1. Note that two group

elements commute if and only if they project to the same direction in the plane.
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To keep track of all the possible effects of rearranging letters, we once and for
all define

N = N(S) := lcm{u ∧ v : u, v ∈ S}.
Definition 13. For (a, b) ∈ m, define n0(a, b) = |(a, b)|π(S), so that the fiber (a, b, ∗)
can be reached by a spelling path of length n if and only if n ≥ n0. Then for n ≥ n0,
we define the highest height at length n over (a, b) to be the largest z coordinate
reachable with at most n letters,

wn = wn(a, b) := max{t : `(a, b, t) ≤ n}.
A spelling (or a group element) will be called highest-height if it realizes (a, b, wn)
at length n. Let W (a, b) := wn0

(a, b) be first non-negative wn.

Note that wn < wn+2. To see this simply replace some generator ai by ajaia
−1
j .

However there may be no spellings at all of a certain parity reaching (a, b), in which
case wn = wn+1.

Definition 14. Given a constant K, let C(K) =
⋃K
i=0 S

i be the strings in S whose
length is at most K (so that the evaluation map sends C(K) onto the ball of radius
K in the word metric). Then a break word is an element c ∈ C(K) and a break
vector is a tuple of break words c = (c0, . . . , c2k).

A simple shape is a tuple ω = (i, j, b, c), where c is a break vector, i, j are indices
(1 ≤ i, j ≤ 2k), and b = (b1, . . . , b2k) is a vector of integers called exponent correc-
tions. The simple shape domain is Cone := {(s−, s, s+) ∈ Z3 : 0 ≤ s−, s+ ≤ s} and
the restricted domain is Cone0 := {(s−, s, 0)} ⊂ Cone. (Compare to Lemma 12.)

Each such shape induces a map from the shape domain to spellings in the group.
That is, define the evaluation of a simple shape to be

ω(s−, s, s+) = ci−1 ·âs
−+bi
i ·ci ·â

s+bi+1

i+1 ·ci+1 · · · â
s+bj−1

j−1 ·cj−1 ·âs
++bj
j ·cj,

recalling that âi = aσii is defined so that I = â1 · · · â2k. Further, we take the
convention that if i = j, i.e., if the shape starts and ends with the same generator,
then the domain is restricted to Cone0.

Example 15. Consider the nonstandard generators forH(Z) given by S = {a, b, A,B}±,
where a, b are the standard generators and A,B are big generators A = a3, B = b3,
and a bar denotes the inverse of an element. Then the word A5aB9bāĀ10b̄B̄3 is
given by evaluating the shape with c = (e, a, bā, b̄, e), b = (0, 0, 1, 0), i = 1, j = 4 at
s = (5, 9, 3).

Remark. There are other shapes with other data that evaluate to the same path.

5.2. Bounded difference between word and cc metrics.

Proposition 16 (Form for highest-height geodesics). Given a finite generating
set S, there is a number K = K(S) such that any highest-height spelling path is
the evaluation of some simple shape with break words from C(K) separating runs
of significant letters given by integer values s−, s+ ≤ s with exponent corrections
0 ≤ bi ≤ K.

That is, in a very strong sense, highest-height spellings track along an arc of
a canonical polygon (Busemann’s isoperimetrix), which has a spelling of the form

âs
−

i âsi+1â
s
i+2 · · · âsj−1â

s+

j with s−, s+ ≤ s, not necessarily integers. The highest-
height spellings only differ by bounded break words appearing in the corners, and
by bounded deviation in run lengths.
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Proof. We suppose that γ is a highest-height geodesic over (a, b) and that its length
is n. We claim that the letters of γ are in cyclic order. If not, we produce γ′ by
putting its letters into cyclic order. This changes neither the horizontal endpoint
(a, b) nor the boost zb(γ). If two of the letters which we move past each other
in this process do not lie in the same direction in projection, then z(γ′) > z(γ),
contradicting our assumption. Thus the letters appearing in γ are arranged in
cyclic order in projection. Also if there are multiple letters ai, a

′
i, a
′′
i projecting

to the same significant ai, then clearly γ must use the one with greatest boost to
achieve highest height.

We now claim that there is a bound K on the total exponent of any non-
significant generator. To see this, suppose that u is a non-significant generator
appearing with large exponent, as a subword um. Supposing ai and ai+1 are the
significant generators whose directions bound the sector that u lies in, there must
be integers p, q, r so that qu = pai + rai+1, with q ≥ p+ r. We can then replace ukq

by akpi a
kr
i+1. The area gained by this operation is quadratic in k while any boost

lost is linear in k. Consequently, if m is sufficiently large, this operation increases
height. So if the total exponent of u in γ is m, then the reshuffling which brings all
powers of u together and then performs the subword replacements above will pro-
duce a path over (a, b) with no greater length and with higher height, contradicting
the assumption.

It follows now that γ consists of corner words of bounded length between ordered
runs of highest-boost significant letters. That is, we have

γ = ci−1 ·ânii ·ci ·â
ni+1

i+1 . . . cj−1 ·ânjj−1 ·cj.

The statement now follows from an application of the Balancing Lemma (Lemma 10).
�

Corollary 17 (Bounded difference). For each generating set S, there exists a
constant K = K(S) with the following property. If wn(a, b) < c ≤ wn+1(a, b) then
n < |(a, b, c)| ≤ n+K, and if 0 ≤ c ≤W = wn0(a, b), then n0 ≤ |(a, b, c)| ≤ n0 +K.

Consequently, there exists a constant K = K(S) such that

dcc(x, 0)−K ≤ |x|S ≤ dcc(x, 0) +K.

Put differently, the embedding of H(Z) with generating set S into H(R) with
the corresponding cc metric is a (1,K) quasi-isometry.

Proof. By definition (a, b, wn) is the highest-height element of the fiber over (a, b)
which can be reached by a spelling of length less than or equal to n, so n < |(a, b, c)|.

Let ω(s−, s, s+) and ω′(t−, t, t+) be shapes evaluating to geodesic spellings for
g = (a, b, wn) and g′ = (a, b, wn+1). Let τ and τ ′ be I-arcs which fellow-travel
these in projection (whose existence is guaranteed by the previous result). If τ
and τ ′ are of almost the same combinatorial type, then the polygonal paths β =
π(ω(s−, s, s+)) and β′ = π(ω′(t−, t, t+)) fellow-travel. Consider the sequence of
paths β′ = β0, β1, . . . , βn+1 = β formed as follows. For i = 1, . . . n, let βi be the
path starting along β until β(i), taking a geodesic from β(i) to β′(i), and continuing
along β′. Since β and β′ K0–fellow-travel for some K0, the connecting geodesics
have bounded length, so each βi has length at most n+1+K0. Take γi to be the lift
of βi. These γi end at group elements (a, b, ci) with |ci+1− ci| ≤ 2K0 +2. Thus any
value (a, b, c) in the range in question can be reached by tacking a bounded-length
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path on to the end of an appropriate γi. It follows that there is K such that for
each c with wn < c ≤ wn+1, |(a, b, c)| ≤ n+K as required.

If τ and τ ′ are not of almost the same combinatorial type, then by Lemma 12
(a, b) is close to the origin and τ and τ ′ almost complete the entire boundary of
an isoperimetrix. It follows that we can replace ω′(t−, t, t+) by a spelling path
which fellow-travels ω(s−, s, s+) in projection and is only boundedly longer than
ω′(t−, t, t+). (To be concrete, the blocks of significant letters and the corners can
be preserved but reordered to correspond to the combinatorics of τ ′.)

Note that for an I–arc of spelling length n, its length the L–norm is n, so its lift
has cc length n as well and it is geodesic. Therefore dcc ((a, b, wn), 0) is boundedly
close to n and we are done with the case wn < c ≤ wn+1.

For heights below W , we begin with a highest-height spelling realizing (a, b, wn0
).

By permuting the letters, we can lower the height in bounded increments down to
some minimum. Suppose it can be lowered to a non-positive height. Then since
the intermediate heights can be reached by appending a bounded-length correction
word, we have n0 ≤ |(a, b, c)| ≤ n0 +K. On the other hand, the cc distance from
0 is constant in the (a, b) fiber up to the first height reached by a regular geodesic,
which is boundedly close to (a, b,W ). We enlarge the constant K from the first
statement in the Lemma to be sufficient for the second statement.

On the other hand, it may be that every permutation of the letters in the spelling
has positive height, for instance if the spelling is simply a single repeated letter with
positive boost. In this case, suppose that ai+1 is the first significant letter in the
spelling and choose some significant letter u such that u∧ ai+1 < 0. It follows that
there is some power of u such that the conjugate ukai+1u

−k has height below zero.
From this modified word, complete the proof as before with successive permutations.

Finally, observe that the map g 7→ g−1 is a length-preserving bijection which
carries (a, b, c) to (−a,−b,−c), so the c < 0 case is similar. �

This gives a new proof of Krat’s result. And in particular, since Krat’s theorem
(bounded difference) has a stronger conclusion than Pansu’s theorem (ratio goes
to 1), our argument also gives a direct geometric proof of Pansu’s theorem for the
special case of arbitrary word metrics on H(Z).

5.3. Simplification. We will see below that every regular element has a geodesic
which is close to a simple shape. To this end, we show that we can modify paths
to become simple shapes while staying in the same fiber and increasing height in
a controlled manner. Recall that we have taken N to be the lcm of the areas of
generator swaps.

Lemma 18 (Simplifying paths). There is a constant K = K(S) so that for each
spelling path γ there exists a refined path γ1 with the following properties.

• If (a, b, c) is the evaluation of γ, then γ1 evaluates to (a, b, c+kN) for some
k ≥ 0;
• the length of γ1 is less than or equal to the length of γ;
• γ1 = ω(s−, s, s+) for some simple shape ω with corners from C(K).

Proof. We start by replacing significant generators which do not have highest boost.
We do this replacing a multiple of N of each type, i.e., each projection and boost,
so that when we are done we have increased height by a multiple of N and are left
with boundedly many letters which do not have highest boost.
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Now suppose that u, v are any two letters appearing in γ such that u∧ v > 0 (so
that u comes before v in the cyclic ordering of their projections, and replacing vu
with uv increases area). Let Λu,v = Λu,v(γ) be the sum of all of the exponents k
appearing in distinct subwords vukw of γ with w ∈ S, w 6= u. Then we can make
generator swaps of u and v letters to change the height by any multiple of u∧ v less
than or equal to Λu,v ·u ∧ v. By rounding Λu,v ·u ∧ v down to the nearest multiple
of N , we can perform generator swaps to obtain γ1, so that Λu,v(γ1) ≤ N for all
pairs u, v.

Notice that we may have to perform this procedure many times. A single appli-
cation of this procedure reduces Λu,v to be less than N , but may increase Λu,v′ . We
can perform this procedure whenever there is some pair u, v so that Λu,v·u∧v > N .
We claim that repeated applications of procedure must eventually terminate with a
spelling where there is no such pair. To see this, consider the total number of pairs
of letters in the spelling which are out of order. This total number decreases at ev-
ery application of the procedure, and hence we must terminate with Λu,v·u∧ v < N
for every pair u and v.

Next, we will cash in any big blocks of non-significant letters for significant
letters. Recall that significant letters project to corner points of the polygon L,
while edge letters project to other boundary points and interior letters project to
the interior. That is, for an edge letter u and an interior letter v with projections
in the sector between ai and ai+1, we have qu = pai + rai+1 and q′v = p′ai + r′ai+1

such that q = p+ r while q′ > p′ + r′.

Consider the subword replacements ukNq → akNpi akNri+1 , or vkNq
′ → akNp

′

i akNr
′

i+1 .
As above, the new paths reach the same endpoint in m while either preserving or
reducing the total spelling length of the path, gaining area by an amount propor-
tional to k2, and reducing boost by an amount proportional to k. We perform these
replacements in every instance where k is large enough to produce is a net height
increase; and note that the height change is a multiple of N .

Repeat the reordering and the replacement steps one after the other until neither
can be performed any further. Then z(γ1) ≥ z(γ), and they differ by a linear
combination of the wedges; namely, ∆z = z(γ1) − z(γ) =

∑
u,v kuv(u ∧ v), for

integers kuv ≥ 0 with kuv ≡ 0 (mod N). At this stage, the path γ1 has well-defined
sides with mostly ai letters and only boundedly many exceptions.

Next, we set things up to push the remaining “out of place” letters to the corners
so that the ai side is mostly a single long block of the ai letter. So far we have
a spelling γ1 that contains boundedly many non-significant letters and boundedly
many significant letters on the wrong side. Consider a side which consists of sig-
nificant generator ai with a bounded number of letters which are not ai. For each
letter u on the ai side, the sign of u ∧ ai tells us whether replacing aiu with uai is
height-increasing or height-decreasing (note that the case u∧ai = 0 is the case that
u and ai commute). We swap each u past aNi in the height-increasing direction (or
an arbitrary direction if they commute) until we create a block w = u′ami u with
m < N . This w itself can be commuted with aNi to the left or right, not decreasing
height. Since there are boundedly many out of place letters on each side, this pro-
cess ends with all these letters within a bounded distance of a corner, so we merge
them with the corner words. At each move we have increased height by a multiple
of N .
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Finally, we balance the side lengths of γ1. To do this we apply the balancing
lemma (Lemma 10) to the lattice of integer tuples which differ from the original
(ti, ti+1, . . . , tj) by multiples of N in each coordinate. This ensures that area and
boost, and therefore height, changes by a multiple of N .

This final step has produced a modified path, again called γ1, which still has the
same (a, b) endpoint as γ and may have higher height by a multiple of N . Now there
are bounded-size exceptional corner words between the sides, and the exponents of
significant blocks differ only by a bounded amount, so this is the evaluation of a
simple shape. �

5.4. General shapes. Beyond simple shapes, we will need a construction of shapes
with break words not only at the corners: runs of significant generators can be
separated by finitely many other break words.

Definition 19. Given a generating set S for which the isoperimetrix has 2k sides,
a general shape with parameter K ≥ 1 is a tuple ω = (i, j, b, χ), where

• 1 ≤ i, j ≤ 2k are a starting and ending side;
• b = (b1, . . . , b2k) is a vector of integers 0 ≤ bi ≤ K;
• χ is a (K − 1)× 2k matrix whose entries are break words from C(K).

Let ShapeK be the set of all such shapes, clearly a finite set for each value K. We
will evaluate each shape at a matrix X ∈MK×2k. Let Λ : ShapeK ×MK×2k → Z2k

be given by Λ(ω,X) = (λ1, . . . , λ2k), where λi :=
(∑K

j=1 xji

)
− bj . Then the shape

domain DomK(ω), for ω ∈ ShapeK , is the set of K×2k matrices X of non-negative
integers satisfying a condition on the image of Λ, namely:

• λi = λj for all i < i, j < j;
• λi, λj ≤ λi;
• λt = 0 for the t that are not between i and j;
• if i = j, then λJJ = 0.

With slight abuse of notation, we will then write Λ : ShapeK ×DomK → Cone given
by Λ(ω,X) = (s−, s, s+) where s− = λi, s = λi+1 = · · · = λj−1, and s+ = λj.
(Note that the last condition in the definition ensures that the map lands in Cone0

in the i = j case.)

It is immediate from this definition that DomK(ω) is given by pulling back a
rational family under an affine map.

The matrix X is to be thought of as a matrix of run lengths. The evaluation of
a shape, ω(X), is the concatenation of the break words with the runs of significant
generator blocks of length prescribed by X. The b vector records the failure of the
column sums to be equal, i.e., the failure of the shadow to be balanced in terms of
its side lengths. (Since its entries are bounded, the column sums are nearly equal,
which means that the spelling will track close to an isoperimetrix.) Simple shapes
are a subset of general shapes for which the break words only appear at the corners.

Remark. Note that the triple (a, b, `) associated to a spelling ω(X) factors through
Λ. That is, as X ranges over DomK(ω), the three integers Λ(ω,X) = (s−, s, s+)
determine the horizontal position and the word length of the evaluation word. Thus
we can regard this as a map ω : Cone→ Z3 that is affine and injective.

Remark. If significant generators include several options with same projection and
different boost, then we also need Y , a matrix specifying for each side how many of
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each different boost level get used, and in this case the evaluation will be ω(X,Y ).
This makes no meaningful difference anywhere in the argument below.

5.5. Unsimplification. We describe a 2-sided surgery and a 3-sided surgery for
paths and then explain how to use them algorithmically to begin with a path
described by a simple shape and produce a path ending lower in the same fiber and
still described by a general shape. In both of these moves, we will suppose that
a1, a2, a3 are successive significant generators and that p, q, r are the values with
gcd = 1 so that where qa2 = pa1 + ra3. (In the special case that a1 = −a3 (the
parallel case), we have such a surgery with p = r = 1, q = 0.) Here we describe the
surgeries on side a2.

2–sided surgery. Here, a subword of the form as11 c1a
s2
2 is replaced by as1−3Np

1 c1wa2,

where w is a permutation of the letters in a3Np
1 as2−1

2 .
3–sided surgery. Here, a subword of the form as11 c1a

s2
2 c2a

s3
3 is replaced by

as1−2Np
1 c1a

s2+2Nq
2 c2a

s3−2Nr
3

Note that since q < p+ r, 3–sided surgery is length reducing.

as11

c1

as22

c2

as33

a2Np
1

as11

c1

as22

a3Np
1

Figure 4. Examples of 2-sided and 3-sided surgery with corners.
If the length s2 of the second side is long enough, then 2-sided
surgery can make a larger change to area because it is thicker: the
width of the surgery is proportional to 3N rather than 2N .

Lemma 20 (Unsimplification for shapes). Given a starting word γ, let γ1 be the
simplification described above and suppose the height difference ∆z = z1 − z0 is
sufficiently large. Then for any full side of γ1, a sequence of (possibly zero) 3-sided
surgeries on that side followed by at most one 2-sided surgery on that side produces
a word γ2 which evaluates to the same group element as γ.

Note that if there are fewer than three sides (so that there is no well-defined
“full side”), then we can appeal to the unstable (pattern) case presented in the
next section.
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Proof. The change in area for each application of three-sided surgery equals

(3SS) := 2Np(a1 ∧ c1) + 2Nps2(a1 ∧ a2) + 2N2pr(a1 ∧ a3) + 2Nr(c2 ∧ a3).

We note that since the wedges are all integers, this is divisible by N and therefore
also by a1 ∧ a2.

On the other hand, the area difference from performing two-sided surgery de-
pends on the permutation parameter; the area change equals

(2SS)k := 3Np(a1 ∧ c1) + k(a1 ∧ a2),

where k is an arbitrary integer, 0 ≤ k ≤ 3Np(s2 − 1).
The lemma’s assumption that the height difference is large enough can be taken

to precisely mean that ∆z = z3 − z0 > (2SS)0.
Perform (3SS) repeatedly, updating z3 each time, until

∆z < (2SS)0 + (3SS).

Then we must show that there exists k such that ∆z = (2SS)k. We know that ∆z
is a multiple of N and therefore of a1 ∧ a2. On the other hand, ∆z is greater than
(2SS)0, and (2SS)k achieves all multiples of a1∧a2 past that threshold and up to its
maximum. Thus it is enough to show that ∆z < (2SS)max. Since we saw above that
∆z < (2SS)0 + (3SS), this amounts to showing that (2SS)max − (2SS)0 > (3SS).
Since all the wedges of vectors and the values p, q, r are fixed by the choice of
side, it suffices to take s2 sufficiently large: since the left-hand side has a term
3Nps2(a1 ∧ a2) and the right-hand side has a term 2Nps2(a1 ∧ a2), eventually the
difference between these overwhelms all the other fixed terms. �

Remark. We note for future reference that we are now in one of three situations.
Either

• ∆z is small, in which case not many letters were moved in producing γ1

from γ and thus these two fellow travel in projection, or
• ∆z is large and we used a 3–sided surgery, in which case we reduced length,

contradicting the assumption that γ is geodesic, or
• We used only a single 2–sided surgery, in which case the resulting word

fellow travels γ1 in projection.

6. Patterns

Recall that cc geodesics are classified into two kinds (see Sec. 3.6), regular and
unstable. In a particular fiber (a, b, ∗), only unstable geodesics reach positive heights
below a certain threshold height and only regular geodesics reach above that level.
We will consider the corresponding situation for word geodesics.

We defined W = W (a, b) to be the highest height reached by a spelling path of
length n0 = |(a, b)|π(S). In each fiber {(a, b, ∗)}, the general shapes defined in the
previous section will reach the elements {(a, b, c) : c > W}, which may be called
regular elements. In this section we turn to the growth of the unstable elements.
Here we will consider the unstable elements {(a, b, c) : 0 ≤ c ≤W} at non-negative
heights. (Later, we will appeal to the map g 7→ g−1 which carries (a, b, c) to
(−a,−b,−c) to deal with the negative heights.)

Definition 21. A pattern is a tuple w = (i, c1, c2, c3), where each ci ∈ C(K)
is a break word (a string of length at most K), and 1 ≤ i ≤ 2k picks out a
sector between successive significant directions ai, ai+1. The (finite) set of all
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such patterns will be denoted PattK . Each pattern w gives a map N2 → S∗ via
w(n1, n2) = c1a

n1

i c2a
n2

i+1c3.

Lemma 22 (Simplifying to a pattern). Let (a, b) lie in the sector between ai and
ai+1, and let N be the lcm of all possible area swaps, as usual. Then there is
K = K(S) with the following property. If γ is a geodesic for an unstable element
(a, b, c), then there is a pattern w ∈ PattK and n1, n2 ∈ N such that the spelling
path τ = w(n1, n2) = c1a

n1

i c2a
n2

i+1c3 has the following properties:

• the paths τ and γ have the same length;
• the path τ evaluates to an element (a, b, c+ kN) with k ≥ 0 and c+ kN ≤
W +K(n1 + n2); and

• the letters ai and ai+1 are the highest-boost generators projecting to ai and
ai+1, respectively.

Proof. First note that if that γ is a geodesic for an unstable element (a, b, c) where
(a, b) lies in the sector between ai and ai+1, then all but boundedly many letters
in γ project to convex combinations of ai and ai+1 . This is because, by Bounded
Difference (Corollary 17), there is K such that if (a, b, c) is unstable, then n0 ≤
|(a, b, c)| ≤ n0 +K, so that the projection π(γ) must reach (a, b) in at most n0 +K
letters. This means π(γ) can only use boundedly many letters that are not on the
edge between those points (i.e., convex combinations of ai and ai+1)—to see this,
just consider orthogonal projection to the normal of that edge, so every time any
other letter is used, the projection falls behind by a definite amount.

We now carry out the simplification procedure used above (Lemma 18), making
a few extra observations as we go. We note that the length of the path in this
case will be maintained and not shortened, because there are only boundedly many
interior letters and so we need not cash them in for significant letters.

If ai is the highest-boost lift and a′i is another letter projecting to ai, then we
can replace any (a′i)

N by aNi . The remaining (boundedly many) a′i, which commute
with ai, can be pushed to the corner position.

Finally, π(τ) fellow-travels the L–norm geodesic an1

i an2

i+1, and therefore fellow-

travels any geodesic achieving (a, b,W ), so |z(τ) −W | is bounded by a constant
multiple of n1 + n2. We enlarge K if necessary to complete the lemma. �

On the other hand, by controlled rearrangement of letters, patterns can produce
a range of group elements in the same fiber.

Definition 23. For a pattern w = c1a
n1
1 c2a

n2
2 c3 evaluating to (a, b, c), define a

process of rearrangements as follows. Consider letters b1, . . . , bk appearing in the

word c2. For j = 1, . . . , k, let dj = N
ai+1∧bj , so that commuting a

dj
i+1 through bj

decreases height by N . We greedily perform commutations to move ai+1 letters
past c2, then continue if possible by commuting groups of ai+1 letters through ai
letters. Consider the set of (a, b, c′) achievable by this process for which 0 ≤ c′ ≤W ,
and let the height interval of the pattern, denoted Iw(a, b), be the z coordinates in
this set. Note that by construction Iw(a, b) is the intersection of an interval with a
residue class.

For example, for the generators {a, b, A,B}± described above in Example 15, if
w = aA∗aB∗b, then Iw(52, 131) = {6, 106, 206, . . . , 3406}. Here W (52, 131) = 3406
and N = 100.
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Lemma 24 (Unsimplification for patterns). Let w(n1, n2) evaluate to (a, b, Cw),
and define C ′w = max Iw and C ′′w = min Iw, so that Cw, C

′
w, C

′′
w are functions of

n1, n2 (or equivalently of a, b) representing the possible heights of rearrangements
of patterns. Then there is a partition of N2 given by finitely many linear equations,
inequalities, and congruences such that Cw, C

′
w, C

′′
w are given by quadratic poly-

nomials in n1, n2 on each set in the partition. Therefore there is a corresponding
partition of m so that these heights are quadratic on each piece on which Iw 6= ∅.

Proof. Fixing w, the height Cw can be seen as a function of (n1, n2) whose degree-
two term equals 1

2n1n2(ai ∧ ai+1), because w(n1, n2) fellow travels the two-sided
figure an1

i an2

i+1. Fellow traveling ensures that the enclosed areas differ by at most an
amount proportional to the length of the shape plus the boost provided by corner
words, which are terms of degree one and zero.
W is the highest height of a minimal-length spelling path reaching the shadow of

w(n1, n2). The simplification argument above shows that the spelling path realizing
height W must also be boundedly close in projection to an1

i a
n2

i+1, so the difference

W −Cw is a linear function as well. If it is positive, then C ′w = Cw. if it is negative,
then C ′w are given by quadratic polynomials on each residue class of Cw (mod N).

The lowering process can take the pattern all the way down below height zero
as long as n2 is sufficiently large compared to N . If it is not, then the quadratic
expression for C ′′w in terms of n1, n2 is given by linear functions of n1 for each small
value of n2.

Finally, the (a, b) are linearly related to (n1, n2) via (a, b) = n1ai + n2ai+1 + c,
where c is the sum of the corner words, so a change of basis finishes the proof. �

7. Word geodesics vs. CC geodesics

Theorem 25 (Realization by shapes and patterns). For every generating set S,
the following two equivalent conditions hold:

• there is a K = K(S) such that every group element has a geodesic spelling
for which the shadow is K–close to the shadow of a cc geodesic;
• there is a K = K(S) such that every group element has a geodesic spelling

which is either the rearrangement of some pattern from PattK or the eval-
uation of some general shape from ShapeK .

Proof. Suppose γ is a geodesic spelling in (H(Z), S) evaluating to (a, b, c) ∈ H(Z).
Recall that N was defined as the least common multiple of the areas spanned by
pairs of letters in the generating alphabet. Then any single neighboring generator-
swap suffices, if performed enough times, to produce area changes of any multiple
of N . The steps will be organized to ensure that, though the height may change,
it stays in the same residue class modulo N . Throughout, we will be assuming
n = `(γ)� N .

First we simplify γ to γ1 (Lemma 18) by shuffling letters, cashing in insignificant
generators, and balancing lengths. We know that γ1 is K–almost balanced with re-
spect to the induced norm on m. This means that it has the form ci−1a

ni
i ci · · · a

nj
j cj

and that for i < i < j < j, the values ni
σi

and
nj
σj

differ by at most a bounded amount

and that the values ni
σi

and nj
σj

can exceed these by at most a bounded amount,
though of course these values are not necessarily integral. We can rewrite such a
spelling γ1 as

γ1 = c′i−1â
s−

i c′iâ
s
i+1 · · · âsj−1c

′
j−1â

s+

j c′j.
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In particular the projection π(γ1) fellow-travels a cc geodesic.
Depending on the number of sides, we next apply unsimplification for shapes or

patterns (Lemma 20 or 24) to obtain γ2. In the pattern case, note that (a, b, c) is
geodesically spelled by some rearrangement of the pattern w, because the pattern
was obtained in the first place by shuffling the original spelling.

To complete the proof of the Theorem for shapes, we observe that we are in
one of three cases: either the height difference z2 − z0 < (2SS)0 so that we can
not apply unsimplifcation; the unsimplification process had at least one three-sided
surgery; or unsimplification had only two-sided surgery. If any three-sided surgery
was performed, then our new spelling γ2 evaluates to the same word as γ but is
shorter, contradicting geodesity of γ. If only two-sided surgery was needed, then
a γ2 of equal length to γ has been produced, but with lower eccentricity. Finally,
if z2 − z0 is smaller than some fixed bound, then the steps in the proof only made
minor changes to γ, and retracing the argument this implies that γ was boundedly
close to isoperimetric at the beginning of the process. �

Example 26. We give an example to illustrate an eccentric word geodesic being
improved by the shape algorithm above. Consider the standard generators, fix a
value D and take M � D. Let γ be the closed rectangular path

eM−D1 eM+D
2 e−M+D

1 e−M−D2 .

This has length 4M and encloses area M2−D2, so it evaluates to the group element
(0, 0,M2 − D2). The cc geodesic reaching the same element would have length

4
√
M2 −D2, which is strictly greater than 4M − 1 if M is large enough compared

to D, and this means that γ is a geodesic. It is already cyclically ordered and has no
out-of-place letters, so γ1 = γ. Balancing the sides produces γ2 = eM1 eM2 e−M1 e−M2 ,
which has area M2. Now we perform a 2-sided surgery, replacing eM1 eM2 with

eM−1
1 eD

2

2 e1e
M2−D2

2 . This reduces the area by D2 while preserving length, so creates
a geodesic to (0, 0,M2 −D2) that 1–fellow-travels the cc geodesic.

8. Competition among shapes and patterns

8.1. Linear comparison for shapes. We have seen that when ω is a shape (sim-
ple or general), the map DomK → Z3 induced by ω taking X 7→ (s−, s, s+) 7→
(a, b, `) is injective and affine. Therefore, for a given shape ω, the inverse map
(a, b, `) 7→ s = (s−, s, s+) is an affine function on ω(DomK) ⊂ Z3.

First, we define the domain of competition, DomCompK(ω, ω′) for a pair of
shapes ω and ω′ to be the inputs for which they reach the same horizontal position
at nearby lengths:

{(X,X ′) ∈ DomK(ω)×DomK(ω′) : |`− `′| ≤ K and π(ω(X)) = π(ω′(X ′))}

Define a competition function fωω′ : DomComp(ω, ω′) → Z to be the difference
in heights, z(ω(X)) − z(ω′(X ′)). We show that if two shapes ever compete, then
the domain of competition decomposes into rational families where that height
difference is given by a linear function.

Definition 27. Given a general shape ω of type (i, j) and data X with lengths
s = (s−, s, s+), we define the trace τ = τ(ω(X)) to be the corresponding I–arc

τ = âs
−

i âsi+1 . . . â
s
j−1â

s+

j .
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τ

γ

γ2

Figure 5. Here, a word geodesic γ with large eccentricity is shown
compared to the corresponding cc geodesic τ , which can’t be real-
ized with integers. The algorithm balances γ and then chips away
area to produce a geodesic γ2 which evaluates to the same group
element as the original γ but tracks close to τ .

That is, τ is equal to π(ω(X)) with the break words deleted and the exponent
differentials erased. Observe that by construction,

• the dependence of τ on X factors through (s−, s, s+);
• τ begins at 0 ∈ m, and synchronously fellow-travels π(ω(X)) with a fellow-

traveller constant which depends only on ω and is independent of X; and
• for a given ω the difference between the projection of the endpoint of ω(X)

and the endpoint of τ is independent of X, i.e., is constant on DomK(ω).
This is because this difference depends only on the b and c data from ω.

Lemma 28 (Linear comparison for shapes). If DomCompK(ω, ω′) is nonempty,
then there is a finite partition such that each piece Uδ ⊂ DomCompK(ω, ω′) is de-
fined by linear equations, linear inequalities, and congruences, and the comparison
function fωω′ |Uδ is linear.

Proof. Take K to be the bounded-difference constant from Corollary 17. We will
partition the domain of competition into pieces for each −K ≤ δ ≤ K consisting
of the subset of positions (a, b) reached by ω at some length ` and by ω′ at length
` + δ. Call this subset Uδ. Let (s−, s, s+) and (t−, t, t+) denote the length data
extracted from X and X ′ respectively.

Fixing this δ, we first consider the case where ω and ω′ have the same combina-
torial type, that is, i = i′, j = j′. Further, if i = j, recall that we have restricted
the domain so that s+ = t+ = 0. We claim that the trace τ ′ fellow travels τ in
projection and that the distance between corresponding sides is independent of a,
b and `. This is because the affine maps

(s−, s, s+) 7→ (a, b, `)

(t−, t, t+) 7→ (a, b, `+ δ)

have the same linear part, hence so do their inverses. Thus, (s−− t−, s− t, s+− t+)
is constant on the domain of competition, which ensures fellow-traveling.
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It follows that the area between the traces is linear on Uδ, as is the area between
each of the shapes and its respective trace. (Area between two planar paths with
different endpoints is measured by closing up with a straight chord.) Clearly the
boost of each shape is also linear on DomComp. Thus fωω′ is linear for each value
of δ in the case where ω and ω′ have the same combinatorial type. (Notice that in
the case where τ and τ ′ might a priori differ as in the second case of Lemma 12,
because of our restriction to Cone0, they actually fellow-travel and the argument
goes through.)

Next, consider the case where τ and τ ′ are almost the same combinatorial type.
In this case ω(X) and ω′(X ′) are also of almost the same combinatorial type. For
specificity let us consider the case where i + 1 = i′, j = j′, and s− and t − t− are
both bounded, so that there are only finitely many possible pairs (s−, t− t−). For
any such pair, the subset of Uδ realizing that pair is defined by linear equations. If

we fix those values—i.e., treat as
−

i at−t
−

i+1 as a break word in ω(X)—we can define
new traces of the same combinatorial type and appeal to the case above.

Finally, we turn to the case where τ and τ ′ end close to the origin and have
different types. Here, ω and ω′ can only compete when τ and τ ′ are close to being
the full polygon. But this implies that there are finitely many values (a, b) for which
they compete. Furthermore, the set of (X,X ′) mapping to each of these finitely
many (a, b) is determined by linear equalities and inequalities. For each such (a, b),
the areas of ω(X) and ω(X ′) differ from a full isoperimetrix of scale s by amounts
which are linear in X and X ′ respectively. Thus their areas differ from each other
by amounts which are linear in X and X ′, and once again their respective boosts
are also linear in X and X ′. The result now follows. �

8.2. Testing geodesity for shapes. Consider the set

{(a, b, wn + j) : n ≥ n0(a, b), 1 ≤ j ≤ wn+1 − wn},
containing the elements of the Heisenberg group in the (positive) regular range,
i.e., the set of (a, b, c) ∈ H(Z) with c > W = wn0(a, b). By Bounded Difference
(Cor 17), such an element (a, b, wn + j) has word length between n+ 1 and n+K.

Since ShapeK is a finite set, we can fix an arbitrary ordering of its elements.

Definition 29. For a general shape ω, let G∆
ω (n) be the set of (a, b, j) ∈ Z3 such

that 1 ≤ j ≤ wn+1−wn and ω is the first shape to geodesically realize (a, b, wn+ j)
at length n+ ∆.

Theorem 30 (Deciding geodesity for shapes). For each shape ω and each 0 ≤ ∆ ≤
K, the G∆

ω (n) form a bounded rational family in Z3.

Proof. We will show that membership in G∆
ω (n) is tested by finitely many linear

equations, linear inequalities, and congruences.
For a shape ω, consider

Aω(n) = {(a, b) : ω produces a spelling of length n over (a, b)}.
To see that Aω(n) is a rational family, recall that X 7→ `(ω(X)) = n is an affine
map. Thus the sets {X ∈ DomK(ω) : `(ω(X)) = n} constitute a rational family.
The map X 7→ (a, b) is also affine and thus the sets Aω(n) are the affine push-
forwards of a rational family and hence themselves rational.

For each shape ω consider

Hω(n) = {(a, b) : ω realizes the highest-height element (a, b, wn) at length n},
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which is empty unless ω is a simple shape. We claim that for each simple shape ω,
Hω(n) is a rational family. For each (a, b) ∈ Aω(n), ω fails to produce the highest-
height element if there is ω′ producing a higher element over (a, b) at length at most
n. However, since wn−2 < wn this only needs to be tested for length n and n− 1.
Thus, for each potential competitor ω′ only two inequalities need to be tested. But
these are tested by the linear inequality fω,ω′(X,X

′) ≥ 0 at δ = 0 and δ = −1. It
follows that the sets Hω(n) form a rational family as claimed.

Now for each pair of shapes α and β, note that

Hα(n+ 1) ∩Hβ(n) = {(a, b) : β realizes wn(a, b) and α realizes wn+1(a, b)}

is a rational family picking out positions at which α is highest-height at length n+1
and β is highest-height at length n. Given (a, b), we can search the finite list of
shapes to find such a pair, and then (a, b, n) affinely determine sα and (a, b, n+ 1)
determine sβ so that α(sα) and β(sβ) are the highest-height paths. Thus, we can
test the requirement that j satisfy 1 ≤ j ≤ wn+1(a, b) − wn(a, b) using equations
which are linear in our data by seeing whether there exist shapes α, β for which
j ≤ fαβ(sα, sβ) at δ = 1.

The requirement that ω realizes (a, b, wn + j) at length n+ ∆ is similarly tested
by j = fωβ(s, sβ) at δ = ∆, i.e., by linear equalities and inequalities.

Finally, for any ω which realizes (a, b, wn + j) at length n + ∆, we must test
whether this is geodesic, i.e., whether this length is shortest-possible. This is ac-
complished by testing all potential competitors ω′ at lengths ∆′ < ∆. This is
finitely many competitors ω′ and finitely many values ∆′, and therefore determined
by finitely many linear equalities and inequalities.

Finally, to see that ω is the lowest-numbered shape to produce such a geodesic,
we simply check ω′ < ω at length ∆. �

8.3. Linear comparison for patterns. We will establish linear competition for
patterns as we did for shapes above. For patterns w and w′, define

DomComp(w,w′) = {(n1, n2, n
′
1, n
′
2) : (a, b) = (a′, b′)},

requiring that both paths end at the same horizontal position. Notice that on
DomComp(w,w′), the length difference `(w(n1, n2))− `(w′(n′1, n′2)) is constant.

Lemma 31 (Linear comparison for patterns). The comparison functions max Iw−
max Iw′ and min Iw −min Iw′ are affine on a finite partition of DomComp(w,w′).

Equivalently, these can be regarded as affine functions on (n1, n2), or affine in
(a, b) on those (a, b) whose fibers are reached by both w and w′.

Proof. The three statements are equivalent because on the appropriate sets, each
of the three quantities, (n1, n2, n

′
1, n
′
2), (n1, n2) and (a, b) determines the other two

by an affine map. Linearity follows from the fact that the tops of the intervals are
given piecewise by quadratic polynomials with the same leading coefficient, and the
bottoms of the intervals are piecewise linear, over finitely many rational families
that partition DomComp. �

8.4. Testing geodesity for patterns. Each pattern w is easily seen to determine
maps from (n1, n2) to length, horizontal position, and `(w(n1, n2))−n0. Notice that
for each w, (a, b, `) is an affine function of (n1, n2), and the map (n1, n2) 7→ (a, b)
is injective.
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Since PattK is a finite set, we can fix an arbitrary ordering of patterns as we did
for shapes.

Definition 32. For a pattern w, let G∆
w (n) be the set of (a, b) ∈ Z2 such that

n = n0(a, b) = |(a, b)|π(S) and w realizes some (a, b, c) at length n+ ∆.

Lemma 33 (Positions reached by patterns). For each shape w and each 0 ≤ ∆ ≤
K, the G∆

w (n) form a bounded rational family in Z2.

Proof. The set of (a, b) reached by w is the push-forward under an affine map of the
set of non-negative pairs (n1, n2). Now observe that in the ith sector of the plane,
the length n0 = n0(a, b) is a periodic linear function in which the linear coefficient
is independent of (a, b) and the constant term depends on the congruence class
of (a, b) modulo the group generated by ai and ai+1. Note also that if w(n1, n2)
ends over (a, b), then (n1, n2) and (a, b) are affine functions of each other. Of
course then length of w(n1, n2) is an affine function of (n1, n2). Thus the difference
`(w(n1, n2))−n, which gives ∆, is is a periodic function, and the result follows. �

Corollary 34 (Counting with patterns). For each w and 0 ≤ ∆ ≤ K there are
polynomials p∆

w (a, b) of degree at most two such that for (a, b) ∈ G∆
w (n) the number

of group elements (a, b, c) with c ≥ 0 geodesically spelled by w at length n+∆, and
by no smaller-numbered pattern, is given by p∆

w (a, b).

Proof. Clearly, the unstable elements of length n0 + ∆ are those reached by some
pattern w at length n0 + ∆ but not by w′ with length n0 + ∆′ for any ∆′ < ∆.

The pw are defined by making the comparisons of the interval Iw against com-
peting intervals Iw′ , and enumerating the points over (a, b) assigned to w as a finite
sum/difference of the appropriate quadratic polynomials. �

9. The growth series

The growth series of (H,S) is now given as follows. The generators S determine
a constant K so that the positive-height regular elements are enumerated by

Sreg(x) =
∑
ω

∞∑
n=0

K∑
∆=0

∑
G∆
ω (n)

x∆ xn,

where ω ∈ ShapeK are the shapes described above.
The series enumerating unstable elements with c ≥ 0 is

Suns(x) =
∑
w

∞∑
n=0

K∑
∆=0

∑
G∆

w (n)

p∆
w (a, b)x∆ xn,

where w ∈ PattK are the patterns described above. The difference in appearance
between the two expressions corresponds to the fact that regular cc geodesics of
a certain length only hit each fiber in a single point, while unstable cc geodesics
may hit in an interval of size that is quadratic in the length.

Both series are rational by Theorem 4, because ShapeK and PattK are finite
sets, the G(n) are bounded rational families, and the p are polynomial. We then
appeal to the height-reversing bijection g 7→ g−1 to similarly count the elements of
non-positive height. This double-counts the elements at height zero.
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Lemma 35 (Zero-height elements). Let σ0(n) = #{(a, b, 0) : |(a, b, 0)|S = n} be
the spherical growth function of height-zero elements. Then S0(x) =

∑
σ0(n)xn is

rational.

Proof. The fiber over (a, b) has an element with c = 0 if and only if ab is even.
Thus, our problem reduces to counting the set of such (a, b) ∈ Z2 with respect to
the generating set π(S). It is well-known that the set of lex-least geodesics in an
abelian group is a regular language. Those ending at an element (a, b) with ab even
is a regular subset of these. The set in question therefore has rational growth. �

Finally, we have

S(x) = 2·Sreg(x) + 2·Suns(x)− S0(x).

This establishes that the spherical growth series S(x) and thus also the growth
series B(x) is rational for any finite generating set of H(Z), finishing the proof of
Theorem 1.

10. Applications, remarks, and questions

10.1. Languages. Each shape defines a language L(ω). For j > i + 1, these lan-
guages are not regular. For j > i + 2, they are not context-free.

This is attributable to non-commutativity: what could be accomplished with a
bounded counter if the group were abelian is a non-regular language otherwise. For
instance, {anbn} is non-regular, even though {(ab)∗} enumerates words with the
same letters. The words represented by our shapes of geodesics need to be nearly
balanced, and this breaks regularity.

It was pointed out to us by Cyril Banderier that a recursion with positive inte-
ger coefficients implies the existence of some regular language enumerated by the
function, though not necessarily the language of geodesics for (G,S). This holds in
the special case of (H, std), which is extremely intriguing.

10.2. Cone types. We recall the definition of cone type from [8].

Definition 36. Consider the Cayley graph Cay(G,S) of group G with generating
set S. Given g ∈ G, the cone at G, denoted C(g), consists of all paths σ based at
g with the property that word length |σ(t)| is strictly increasing along σ. The cone
type of g consists of the cone of g translated to the origin, i.e., g−1(C(g)).

For Cay(G,S) to have finitely many cone types is almost exactly the same thing
as having the language of geodesics in Cay(G,S) be a regular language. If Cay(G,S)
has finitely many cone types, these cone types can be used as the states of a finite
state automaton which accepts the language of geodesics. This is because the cone
type of G tells us which generators are outbound at g. However, the cone type of
g encodes additional information, namely which edges are “half outbound”: if an
edge e of Cay(G,S) connects two elements g and g′ with |g| = |g′| = n, then the
midpoint of this edge is at distance n+ 1

2 from the origin. We believe that there is
no known example of a group presentation for which the language of geodesics is
regular, but which has infinitely many cone types.

¿From the shape theorem we easily recover the (already known) fact that H
has infinitely many cone types in every generating set. In particular, it has no
generating set where the language of geodesics is regular.
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To see this, just note that there are infinitely many possibilities for how long a
geodesic continues in a particular significant direction before turning to the succes-
sive direction, depending on what shape has reached the point g = (a, b, c) at what
scale.

Brian Rushton has pointed out to us that the presence of infinitely many cone
types implies that there is no associated subdivision rule. (See [23].)

10.3. Almost convexity. A metric space is called almost convex (k) or AC(k) if
there exists a constant N = N(k) such that for any two elements x, y in any metric
sphere Sn(x0) with d(x, y) ≤ k, there is a path of length at most N connecting
x and y in Bn(x0). That is, convexity would require that for two points on a
sphere of any radius, connecting them inside the ball is efficient; almost-convexity
is the existence of an additive bound on the inefficiency. This was defined by
Cannon in [9], where he also showed that for Cayley graphs of finitely generated
groups, AC(2) ⇒ AC(k) ∀k. The importance of this property is that it gives a
fast algorithm for constructing the Cayley graph. Almost-convexity is known for
hyperbolic groups and virtually abelian groups with any finite set of generators,
and for Coxeter groups and certain 3–manifold groups with standard generators.
Several weakenings and strengthenings of the property have been proposed and
studied by various authors. It was established for H(Z) with standard generators
in [24], but to our knowledge has not been extended to arbitrary generators, which
we settle here by using once again the comparison of the cc and word metrics.

Intriguingly, the dissertation of Carsten Thiel [27] establishes that higher Heisen-
berg groups are not AC in their standard generators, which corresponds remarkably
to Stoll’s finding of non-rational growth for the same examples.

Lemma 37. The cc metric on H(R) induced by any rational polygonal norm is
almost convex. (That is, it is AC(k) for all k.)

Proof. Consider x, y ∈ Sn with dcc(x, y) ≤ 2. First we show that if there exist
geodesics 0x and 0y that K–fellow-travel in projection, then there exists a connect-
ing path from x to y of bounded length inside the ball. To construct this path,
begin with a constant m � 1. We will build a path from π(x) to π(y) as follows:
backtrack distance mK along π(0x). Connect geodesically to the point w that
is n −mK from the origin along π(0y) and finish by connecting w to π(y) along
π(0y). This path has length at most (2m + 1)K. Its lift connects x not to y but
to something else in the same fiber over π(y), differing in height by at most mK2

because that is the most area that can be contained in the “rectangular” strip en-
closed by the path we have built. To correct this, we can splice a loop into our
planar path at the point w. This loop follows a parallelogram with sides tu and tv
for some successive significant generators, where t is chosen so that the area of the
parallelogram, t2(u ∧ v), is the height differential to be made up. This has length
at most 4

√
m
u∧vK. Since m was chosen to be large, this length is less than mK and

so the lift of the concatenated path stays inside Bn. Thus we have connected x to
y by a path inside the ball, of length bounded independent of x, y, n.

To complete the proof, we must reduce to this case. By possibly inserting one
extra point z and separately considering the two pairs x, z and z, y, we will cover
all possibilities with the following cases.

Case 1: x, y both unstable and in the same sector.
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Then there are fellow-traveling geodesics as required: if the sector is between
significant directions ai and ai+1, then x is reached in exactly one way by a geodesic

whose shadow is of the form aiia
j
i+1a

k
i . Likewise y has a unique such geodesic, and

they must fellow-travel to reach nearby endpoints.
Case 2: x, y both regular and of the same combinatorial type.
In this case, the geodesics from the origin are unique, and both project to P–arcs

for the defining polygon P of the norm with the same combinatorial type. ¿From
the fellow-traveling lemma for P–arcs (Lemma 12) we know that these fellow-travel
in projection and we proceed as before.

Case 3: One of x, y projects to the origin (say y = (0, 0, c)).
In this case we fix any geodesic from the origin to x. There are many geodesics

reaching y (corresponding to choosing any starting position on P ), and we can
take one of the same combinatorial type as the path chosen for x. These then
fellow-travel in projection.

This concludes the proof of AC(2). To deduce AC(k) for any other k, one can
simply apply δ2/k to send the points x, y to a sphere on which they are at most
distance 2 apart, then apply δk/2 to the path constructed above. In this way, we

get N(k) = k
2N(2). �

Theorem 38. The Heisenberg group is almost convex with any word metric.

Proof. Start with g1, g2 with |g1| = |g2| = n and |g1g
−1
2 | ≤ 2, and let K be the

constant bounding the difference between the word and cc metrics, as in Cor 17.
Then if Bn is the ball of radius n in the word metric and Bn is the ball of radius n
in the associated cc metric, we have Bn ⊂ Bn+K and Bn−K ∩H(Z) ⊆ Bn.

Fix any p � 2K. Let h1 be a group element obtained by backtracking p steps
along a geodesic spelling of g1, so that |h1| = n − p, and define h2 similarly. The
distance |h1h

−1
2 | is at most 2 + 2p, and since the (continuous) group is AC(2 + 2p),

there is a constant N(2+2p) so that a cc path γ exists between h1 and h2 of length
at most N and contained totally inside Bn−p+K . As γ is traversed from h1 to h2,
construct an ordered set of integer points by choosing a nearest point at each time.
Since the diameter of a fundamental domain for H(Z) is bounded, say by ∆, each
of these points is contained in the ∆–neighborhood of γ and therefore each is within
2∆ cc distance of the previous and next point in the sequence. These round-off
points all lie in Bn−p+K+∆. Two successive points can be connected by a word path
of length at most 2∆ +K, and the word path from h1 to h2 built by concatenating
these must lie inside Bn−p+2K+2∆. There are at most N/2∆ round-off points, so
the total length of the word path from h1 to h2 is bounded by (N/2∆)(2∆ + K).
Since p was chosen to ensure that n − p + K + 2∆ < n −K, this path lies inside
Bn−K ∩ H(Z) ⊆ Bn. Piecing this together we obtain a path from g1 to g2 inside
Bn of length at most (N/2∆)(2∆ +K) + 2p. �

10.4. Open questions.

10.4.1. Scope of rational growth in the nilpotent class. Our argument should carry
through with small modifications for groups that are virtually H(Z) × Zd. We
know from Stoll’s result that not all two-step groups have rational growth, even
with respect to their standard generators. However it is possible (for instance) that
free nilpotent groups do.

Question 39. Which nilpotent groups have rational growth in all generating sets?
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On the other hand, one could try to mimic and extend the Stoll construction.

Question 40. Does every nilpotent group have rational growth with respect to at
least one generating set? In the other direction, for which nilpotent groups is the
fundamental volume transcendental for standard generators (which would rule out
rationality by Theorem 2)?

10.4.2. Period and coefficients. In the polynomial range (i.e., f(n) ≤ And for some
A, d), rational growth is equivalent to the property that f(n) is eventually quasi-
polynomial, i.e., there are a finite period N , polynomials f1, . . . , fN , and a threshold
T such that

n ≥ T, n = kN + i =⇒ f(n) = fi(n).

For example, Shapiro’s computation of the spherical growth for the Heisenberg
group with standard generators showed it to be eventually quasipolynomial of pe-
riod twelve, and in fact only the constant term oscillates:

σ(n) =
1

18

(
31n3 − 57n2 + 105n+ cn

)
,

where cn = −7,−14, 9,−16,−23, 18,−7, 32, 9, 2,−23, 0, and then repeats mod 12,
for n ≥ 1. (So that σ(1) = 4, σ(2) = 12, and so on.)

It follows that the (ball) growth function β(n) =
∑n
k=0 σ(k) is also quasipoly-

nomial of period twelve, with only its constant term oscillating. We note that this
implies that the growth function for standard generators is within bounded distance
of a true polynomial in n.

Preliminary calculations indicate that several other generating sets also have
the property that only the constant terms oscillate; in these examples, the periods
relate both to the sidedness of the fundamental polygon and to the index of the
sublattice of Z2 generated by its extreme points.

Question 41. How does the generating set S determine the period of quasipolyno-
miality of the growth function? Which coefficients oscillate? We know that the top
coefficient of β(n) is the volume of the cc ball; is the second coefficient well-defined,
and if so is it a “surface area”? Are all growth functions bounded distance from
polynomials?
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