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Fractals

A self-similar action of a group G on a tree T is fractal in the
sense that we see the action of the group replicated at every vertex
of the tree, regardless of depth.

But this doesn’t give us the pretty pictures that we expect of
fractals.

... Or does it?

Self-similar groups arise from complex dynamical systems, and
classical complex dynamical theory (i.e. the work of Fatou and
Julia) yields many examples of fractals.

Perhaps we can recover the fractal associated with a complex
dynamical system from its iterated monodromy group?
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A basic example

Complex dynamics is concerned with the orbits of points under
iteration of complex rational maps.

Example:
What can we say about the dynamics of the map z 7→ z2? Where
do points go under repeated squaring?

If |w | < 1, then w is drawn in to the critical point 0. If |w | > 1,
then w spirals out towards ∞ (the other critical point).

The unit circle is the boundary between these two regions. So if
|w | = 1, then there are pairs of points arbitrarily close to w that
exhibit very different behavior under repeated application of the
map z 7→ z2.
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Julia sets

The Julia set J(f ) of a complex rational map f is (roughly
speaking) the set of points in Ĉ around which the dynamics of f
are very sensitive to initial conditions. That is, close points will
diverge greatly after a number of applications of f .

Julia sets of maps more complicated than z 7→ z2 are more
complicated than the unit circle. Here is the Julia set of
z 7→ z2 − 1:
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The Basilica group: IMG (z2 − 1)

The complex polynomial f (z) = z2 − 1 is a double cover of
S2 \ {∞, 0,−1} by S2 \ {∞, 0,−1, 1}.

So we have the following actions of the generators:

s1 = (01)(s2, I) s2 = (s1, I)
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Schreier graphs

Definition

For G a group with finite generating set S acting on a space X ,
the (simplicial) Schreier graph of this action with respect to this
generating set has vertex set equal to the points in X and an edge
between vertices if and only if a generator takes one of the
associated points to the other.

Examples: D6 acting on the six vertices of a regular hexagon, but
with different generating sets:
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Schreier graphs of IMG (z2 − 1)

This is the (not simplicial–sorry!) Schreier graph of IMG (z2 − 1)
on the first level of the tree of preimages:
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Schreier graphs of IMG (z2 − 1)

This is the (not simplicial–sorry!) Schreier graph of IMG (z2 − 1)
on the second level of the tree of preimages:
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Schreier graphs of IMG (z2 − 1)

This is the (not simplicial–sorry!) Schreier graph of IMG (z2 − 1)
on the third level of the tree of preimages:
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Schreier graphs of IMG (z2 − 1)

This is the (not simplicial–sorry!) Schreier graph of IMG (z2 − 1)
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Schreier graphs of IMG (z2 − 1)

This is the (not simplicial–sorry!) Schreier graph of IMG (z2 − 1)
on the fifth level of the tree of preimages:
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Schreier graphs of IMG (z2 − 1)

This is the (not simplicial–sorry!) Schreier graph of IMG (z2 − 1)
on the boundary of the tree of preimages:
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Convergence of the Schreier graphs

Theorem (Nekrashevych)

The Schreier graphs of the action of a contracting self-similar
group on the levels of the tree converge to a fractal set. In the
case of an iterated monodromy group of a post-critically finite
polynomial, this set is homeomorphic to the Julia set of the
polynomial.

Further, the shift map on the boundary of the tree gives us a
dynamical system on the limit Schreier graph. This system is
topologically conjugate to the action of the polynomial on its Julia
set.
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The Grigorchuk group

Let’s compute the simplicial Schreier graphs of the action of the
Grigorchuk group on the first few levels of the binary tree.

a(0w) = 1w b(0w) = 0a(w) c(0w) = 0a(w) d(0w) = 0w
a(1w) = 0w b(1w) = 1c(w) c(1w) = 1d(w) d(1w) = 1b(w)

The first level is easy:

The second level:
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The third level:
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The Grigorchuk group

In general:

Every vertex will have an edge associated with a.
Vertices beginning with 0 will have a single edge associated
with both b and c , but no edge for d .
Vertices beginning with 10 will have a single edge associated
with both b and d , but no edge for c .
Vertices beginning with 110 will have a single edge associated
with both c and d , but no edge for b.
Vertices beginning with 1110 will have a single edge
associated with both b and c, but no edge for d .
repeat...

Thus, every vertex at level n ≥ 2 with a 0 occurring in the first
n − 1 places will have exactly 2 edges and the remaining two
vertices (1n−10 and 1n) will each have exactly one edge.
So our limit fractal is a line segment.
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The infinite dihedral group

The infinite dihedral group D∞ admits a self-similar action:

a(0w) = 1w B(0w) = 0a(w)
a(1w) = 0w B(1w) = 1B(w)

The first level:

The second level:

The third level:
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The infinite dihedral group

In the Schreier graphs, the role of {b, c, d} in the Grigorchuk
group is being replaced exactly by the action of B.

Hence, The Grigorchuk group and D∞ have the same Schreier
graphs, and thus the same limit fractal.

Unfortunately, this means that our groups → dynamical systems
operation is not invertible.
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